
e04 – Minimizing or Maximizing a Function e04unc

nag opt nlin lsq (e04unc)

1. Purpose

nag opt nlin lsq (e04unc) is designed to minimize an arbitrary smooth sum of squares function
subject to constraints (which may include simple bounds on the variables, linear constraints
and smooth nonlinear constraints) using a sequential quadratic programming (SQP) method. As
many first derivatives as possible should be supplied by the user; any unspecified derivatives are
approximated by finite differences. It is not intended for large sparse problems.

nag opt nlin lsq may also be used for unconstrained, bound-constrained and linearly constrained
optimization.

2. Specification

#include <nag.h>
#include <nage04.h>

void nag_opt_nlin_lsq(Integer m, Integer n, Integer nclin, Integer ncnlin,
double a[], Integer tda,
double bl[], double bu[], double y[],
void (*objfun)(Integer m, Integer n, double x[],

double f[], double fjac[], Nag_Comm *comm),
void (*confun)(Integer n, Integer ncnlin, Integer needc[],

double x[], double conf[], double conjac[],
Nag_Comm *comm),

double x[], double *objf, double f[], double fjac[],
Integer tdfjac, Nag_E04_Opt *options, Nag_Comm *comm,
NagError *fail)

3. Description

nag opt nlin lsq is designed to solve the nonlinear least-squares programming problem – the
minimization of a smooth nonlinear sum of squares function subject to a set of constraints on
the variables. The problem is assumed to be stated in the following form:

minimize
x∈Rn

F (x) =
1
2

m∑
i=1

{yi − fi(x)}2 subject to l ≤



x
ALx
c(x)


 ≤ u, (1)

where F (x) (the objective function) is a nonlinear function which can be represented as the sum
of squares of m subfunctions (y1 − f1(x)), (y2 − f2(x)), . . . , (ym − fm(x)), the yi are constant, AL

is an nL by n constant matrix, and c(x) is an nN element vector of nonlinear constraint functions.
(The matrix AL and the vector c(x) may be empty.) The objective function and the constraint
functions are assumed to be smooth, i.e., at least twice-continuously differentiable. (The method
of nag opt nlin lsq will usually solve (1) if there are only isolated discontinuities away from the
solution.)

Note that although the bounds on the variables could be included in the definition of the linear
constraints, we prefer to distinguish between them for reasons of computational efficiency. For
the same reason, the linear constraints should not be included in the definition of the nonlinear
constraints. Upper and lower bounds are specified for all the variables and for all the constraints.
An equality constraint can be specified by setting li = ui. If certain bounds are not present, the
associated elements of l or u can be set to special values that will be treated as −∞ or +∞. (See
the description of the optional parameter inf bound in Section 8.2.)

If there are no nonlinear constraints in (1) and F is linear or quadratic, then one of nag opt lp
(e04mfc), nag opt lin lsq (e04ncc) or nag opt qp (e04nfc) will generally be more efficient.

The user must supply an initial estimate of the solution to (1), together with functions that define
f(x) = (f1(x), f2(x), . . . , fm(x))

T , c(x) and as many first partial derivatives as possible; unspecified
derivatives are approximated by finite differences.

The subfunctions are defined by the array y and function objfun, and the nonlinear constraints
are defined by the function confun. On every call, these functions must return appropriate values

[NP3491/6] 3.e04unc.1

nag opt nlin lsq NAG C Library Manual

of f(x) and c(x). The user should also provide the available partial derivatives. Any unspecified
derivatives are approximated by finite differences; see Section 8.2 for a discussion of the optional
parameters obj deriv and con deriv. Just before either objfun or confun is called, each element of
the current gradient array fjac or conjac is initialized to a special value. On exit, any element that
retains the value is estimated by finite differences. Note that if there are any nonlinear constraints,
then the first call to confun will precede the first call to objfun.

For maximum reliability, it is preferable for the user to provide all partial derivatives (see Chapter
8 of Gill et al (1981) for a detailed discussion). If all gradients cannot be provided, it is similarly
advisable to provide as many as possible. While developing the functions objfun and confun, the
optional parameter verify grad (see Section 8.2) should be used to check the calculation of any
known gradients.

nag opt nlin lsq is based on upon nag opt nlp (e04ucc); see Section 7 of the documentation for
nag opt nlp (e04ucc) for details of the algorithm.

4. Parameters

m
Input: m, the number of subfunctions associated with F (x).
Constraint: m > 0.

n
Input: n, the number of variables.
Constraint: n > 0.

nclin
Input: nL, the number of general linear constraints.
Constraint: nclin ≥ 0.

ncnlin
Input: nN , the number of nonlinear constraints.
Constraint: ncnlin ≥ 0.

a[nclin][tda]
Input: the ith row of a must contain the coefficients of the ith general linear constraint (the
ith row of the matrix AL in (1)), for i = 1, 2, . . . , nL.

If nclin = 0 then the array a is not referenced.

tda
Input: the second dimension of the array a as declared in the function from which
nag opt nlin lsq is called.
Constraint: tda ≥ n if nclin > 0.

bl[n+nclin+ncnlin]
bu[n+nclin+ncnlin]

Input: bl must contain the lower bounds and bu the upper bounds, for all the constraints
in the following order. The first n elements of each array must contain the bounds on the
variables, the next nL elements the bounds for the general linear constraints (if any), and the
next nN elements the bounds for the nonlinear constraints (if any). To specify a non-existent
lower bound (i.e., lj = −∞), set bl[j − 1] ≤ −inf bound, and to specify a non-existent upper
bound (i.e., uj = +∞), set bu[j − 1] ≥ inf bound, where inf bound is one of the optional
parameters (default value 1020, see Section 8.2). To specify the jth constraint as an equality,
set bl[j − 1] = bu[j − 1] = β, say, where |β| < inf bound.
Constraints:

bl[j] ≤ bu[j], for j = 0, 1, . . . ,n+nclin+ncnlin−1,
|β| < inf bound when bl[j] = bu[j] = β.

y[m]
Input: the coefficients of the constant vector y in the objective function.

3.e04unc.2 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04unc

objfun
objfunmust calculate the vector f(x) of subfunctions and (optionally) its Jacobian (= ∂f/∂x)
for a specified n element vector x.

The specification for objfun is:

void objfun(Integer m, Integer n, double x[], double f[],
double fjac[], Integer tdfjac, Nag_Comm *comm)

m
Input: m, the number of subfunctions.

n
Input: n, the number of variables.

x[n]
Input: x, the vector of variables at which f(x) and/or all available elements of
its Jacobian are to be evaluated.

f[m]
Output: if comm->flag = 0 or 2, objfun must set f[i− 1] to the value of the ith
subfunction fi at the current point x, for some or all i = 1, 2, . . . ,m (see the
description of the parameter comm->needf below).

fjac[m∗tdfjac]
Output: if comm->flag = 2, objfun must contain the available elements of the
subfunction Jacobian matrix. fjac[(i − 1)∗tdfjac+j − 1] must be set to the
value of the first derivative ∂fi/∂xj at the current point x for i = 1, 2, . . . ,m;
j = 1, 2, . . . , n.
If the optional parameter obj deriv = TRUE (the default), all elements of fjac
must be set; if obj deriv = FALSE, any available elements of the Jacobian matrix
must be assigned to the elements of fjac; the remaining elements must remain
unchanged.
Any constant elements of fjacmay be assigned once only at the first call to objfun,
i.e., when comm->first = TRUE. This is only effective if the optional parameter
obj deriv = TRUE.

tdfjac
Input: the second dimension of the array fjac as declared in the function from
which nag opt nlin lsq is called.

comm
Pointer to structure of type Nag Comm; the following members are relevant to
objfun.

flag – Integer
Input: objfun is called with comm->flag set to 0 or 2.
If comm->flag = 0 then only f is referenced. If comm->flag = 2 then both
f and fjac are referenced.
Output: if objfun resets comm->flag to some negative number then
nag opt nlin lsq will terminate immediately with the error indicator
NE USER STOP. If fail is supplied to nag opt nlin lsq fail.errnum will be
set to the user’s setting of comm->flag.

first – Boolean
Input: will be set to TRUE on the first call to objfun and FALSE for all
subsequent calls.

nf – Integer
Input: the number of evaluations of the objective function; this value will
be equal to the number of calls made to objfun including the current one.

[NP3491/6] 3.e04unc.3

nag opt nlin lsq NAG C Library Manual

needf – Integer
Input: if needf = 0, objfun must set, for all i = 1, 2, . . . ,m, f[i − 1] to the
value of the ith subfunction fi at the current point x. If needf = i, for
i = 1, 2, . . . ,m, then it is sufficient to set f[i − 1] to the value of the ith
subfunction fi. Appropriate use of needf can save a lot of computational
work in some cases. Note that when comm->needf 	= 0, comm->flag will
always be 0, hence this does not apply to the Jacobian matrix.

user – double ∗
iuser – Integer ∗
p – Pointer

The type Pointer is void *.
Before calling nag opt nlin lsq these pointers may be allocated memory
by the user and initialized with various quantities for use by objfun when
called from nag opt nlin lsq.

Note: objfun should be tested separately before being used in conjunction with
nag opt nlin lsq. The optional parameters verify grad and max iter can be used to assist
this process. The array x must not be changed by objfun.
If the function objfun does not calculate all of the Jacobian elements then the optional
parameter obj deriv should be set to FALSE.

confun
confun must calculate the vector c(x) of nonlinear constraint functions and (optionally) its
Jacobian (= ∂c/∂x) for a specified n element vector x. If there are no nonlinear constraints
(i.e., ncnlin = 0), confun will never be called and the NAG defined null void function pointer,
NULLFN, can be supplied in the call to nag opt nlin lsq. If there are nonlinear constraints the
first call to confun will occur before the first call to objfun.

The specification for confun is:

void confun(Integer n, Integer ncnlin, Integer needc[], double x[],
double conf[], double conjac[], Nag_Comm *comm)

n
Input: n, the number of variables.

ncnlin
Input: nN , the number of nonlinear constraints.

needc[ncnlin]
Input: the indices of the elements of conf and/or conjac that must be evaluated
by confun. If needc[i− 1] > 0 then the ith element of conf and/or the available
elements of the ith row of conjac (see parameter comm->flag below) must be
evaluated at x.

x[n]
Input: the vector of variables x at which the constraint functions and/or all
available elements of the constraint Jacobian are to be evaluated.

conf[ncnlin]
Output: if needc[i−1] > 0 and comm->flag = 0 or 2, conf[i−1] must contain the
value of the ith constraint at x. The remaining elements of conf, corresponding
to the non-positive elements of needc, are ignored.

3.e04unc.4 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04unc

conjac[ncnlin∗n]
Output: if needc[i − 1] > 0 and comm->flag = 2, the ith row of conjac (i.e.,
the elements conjac[(i− 1)∗n+j − 1], j = 1, 2, . . . , n) must contain the available
elements of the vector ∇ci given by

∇ci =
(
∂ci

∂x1

,
∂ci

∂x2

, . . . ,
∂ci

∂xn

)T

,

where ∂ci/∂xj is the partial derivative of the ith constraint with respect to the jth
variable, evaluated at the point x. The remaining rows of conjac, corresponding
to non-positive elements of needc, are ignored.
If the optional parameter con deriv = TRUE (the default), all elements of conjac
must be set; if con deriv = FALSE, then any available partial derivatives of ci(x)
must be assigned to the elements of conjac; the remaining elements must remain
unchanged.
If all elements of the constraint Jacobian are known (i.e., con deriv = TRUE;
see Section 8.2), any constant elements may be assigned to conjac one time only
at the start of the optimization. An element of conjac that is not subsequently
assigned in confun will retain its initial value throughout. Constant elements
may be loaded into conjac during the first call to confun. The ability to preload
constants is useful when many Jacobian elements are identically zero, in which
case conjac may be initialized to zero at the first call when comm->first = TRUE.
It must be emphasized that, if con deriv = FALSE, unassigned elements of conjac
are not treated as constant; they are estimated by finite differences, at non-trivial
expense. If the user does not supply a value for the optional argument f diff int
(the default; see Section 8.2), an interval for each element of x is computed
automatically at the start of the optimization. The automatic procedure can
usually identify constant elements of conjac, which are then computed once only
by finite differences.

comm
Pointer to structure of type Nag Comm; the following members are relevant to
confun.

flag – Integer
Input: confun is called with comm->flag set to 0 or 2.
If comm->flag = 0 then only conf is referenced. If comm->flag = 2 then
both conf and conjac are referenced.
Output: if confun resets comm->flag to some negative number then
nag opt nlin lsq will terminate immediately with the error indicator
NE USER STOP. If fail is supplied to nag opt nlin lsq fail.errnum will be
set to the user’s setting of comm->flag.

first – Boolean
Input: will be set to TRUE on the first call to confun and FALSE for all
subsequent calls.

user – double ∗
iuser – Integer ∗
p – Pointer

The type Pointer is void *.
Before calling nag opt nlin lsq these pointers may be allocated memory by
the user and initialized with various quantities for use by confun when
called from nag opt nlin lsq.

[NP3491/6] 3.e04unc.5

nag opt nlin lsq NAG C Library Manual

Note: confun should be tested separately before being used in conjunction with
nag opt nlin lsq. The optional parameters verify grad and max iter can be used to assist
this process. The array x must not be changed by confun.
If confun does not calculate all of the Jacobian constraint elements then the optional
parameter con deriv should be set to FALSE.

x[n]
Input: an initial estimate of the solution.
Output: the final estimate of the solution.

objf
Output: the value of the objective function at the final iterate.

f[m]
Output: the values of the subfunctions fi, for i = 1, 2, . . . ,m, at the final iterate.

fjac[m][tdfjac]
Output: the Jacobian matrix of the functions f1, f2, . . . , fm at the final iterate, i.e.,
fjac[i − 1][j − 1] contains the partial derivative of the ith subfunction with respect to the
jth variable, for i = 1, 2, . . . ,m; j = 1, 2, . . . ,n. (See also the discussion of parameter fjac
under objfun.)

tdfjac
Input: the second dimension of the array fjac as declared in the function from which
nag opt nlin lsq is called.

options
Input/Output: a pointer to a structure of type Nag E04 Opt whose members are optional
parameters for nag opt nlin lsq. These structure members offer the means of adjusting some
of the parameter values of the algorithm and on output will supply further details of the
results. A description of the members of options is given below in Section 8. Some of the
results returned in options can be used by nag opt nlin lsq to perform a ‘warm start’ (see the
member start in Section 8.2).
If any of these optional parameters are required then the structure options should be
declared and initialized by a call to nag opt init (e04xxc) and supplied as an argument to
nag opt nlin lsq. However, if the optional parameters are not required the NAG defined null
pointer, E04 DEFAULT, can be used in the function call.

comm
Input/Output: structure containing pointers for communication to the user-supplied
functions objfun and confun, and the optional user-defined printing function; see the
description of objfun and confun and Section 8.3.1 for details. If the user does not need
to make use of this communication feature the null pointer NAGCOMM NULL may be used in the
call to nag opt nlin lsq; comm will then be declared internally for use in calls to user-supplied
functions.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.
Users are recommended to declare and initialize fail and set fail.print = TRUE for this
function.

4.1. Description of Printed Output

Intermediate and final results are printed out by default. The level of printed output can be
controlled by the user with the structure members options.print level and options.minor print level
(see Section 8.2). The default setting of print level = Nag Soln Iter and minor print level =
Nag NoPrint provides a single line of output at each iteration and the final result. This section
describes the default printout produced by nag opt nlin lsq.

3.e04unc.6 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04unc

The following line of summary output (< 80 characters) is produced at every major iteration. In
all cases, the values of the quantities printed are those in effect on completion of the given iteration.

Maj is the major iteration count.

Mnr is the number of minor iterations required by the feasibility and optimality phases
of the QP subproblem. Generally, Mnr will be 1 in the later iterations, since
theoretical analysis predicts that the correct active set will be identified near the
solution (see Section 7 of the documentation for nag opt nlp (e04ucc)).
Note that Mnr may be greater than the optional parameter minor max iter
(default value = max(50,3(n + nL + nN)); see Section 8.2) if some iterations
are required for the feasibility phase.

Step is the step taken along the computed search direction. On reasonably well-
behaved problems, the unit step will be taken as the solution is approached.

Merit function is the value of the augmented Lagrangian merit function at the current iterate.
This function will decrease at each iteration unless it was necessary to increase
the penalty parameters (see Section 7.3 of the documentation for nag opt nlp
(e04ucc)). As the solution is approached, Merit function will converge to the
value of the objective function at the solution.

If the QP subproblem does not have a feasible point (signified by I at the
end of the current output line), the merit function is a large multiple of the
constraint violations, weighted by the penalty parameters. During a sequence of
major iterations with infeasible subproblems, the sequence of Merit Function
values will decrease monotonically until either a feasible subproblem is obtained
or nag opt nlin lsq terminates with fail.code = NW NONLIN NOT FEASIBLE
(no feasible point could be found for the nonlinear constraints).

If no nonlinear constraints are present (i.e., ncnlin = 0), this entry contains
Objective, the value of the objective function F (x). The objective function
will decrease monotonically to its optimal value when there are no nonlinear
constraints.

Violtn is the Euclidean norm of the residuals of constraints that are violated or in the
predicted active set (not printed if ncnlin is zero). Violtn will be approximately
zero in the neighbourhood of a solution.

Norm Gz is ‖ZT gFR‖, the Euclidean norm of the projected gradient (see Section 7.1 of the
documentation for nag opt nlp (e04ucc)). Norm Gz will be approximately zero in
the neighbourhood of a solution.

Cond Hz is a lower bound on the condition number of the projected Hessian approximation
HZ (HZ = ZTHFRZ = RT

ZRZ ; see (6) and (11) in Section 7.1 and Section 7.2,
respectively, of the documentation for nag opt nlp (e04ucc)). The larger this
number, the more difficult the problem.

The line of output may be terminated by one of the following characters:

M is printed if the quasi-Newton update was modified to ensure that the Hessian
approximation is positive-definite (see Section 7.4 of the documentation for
nag opt nlp (e04ucc)).

I is printed if the QP subproblem has no feasible point.

C is printed if central differences were used to compute the unspecified objective and
constraint gradients. If the value of Step is zero, the switch to central differences
was made because no lower point could be found in the line search. (In this
case, the QP subproblem is re-solved with the central difference gradient and
Jacobian.) If the value of Step is non-zero, central differences were computed
because Norm Gz and Violtn imply that x is close to a Kuhn–Tucker point (see
Section 7.1 of the documentation for nag opt nlp (e04ucc)).

L is printed if the line search has produced a relative change in x greater than
the value defined by the optional parameter step limit (default value = 2.0; see

[NP3491/6] 3.e04unc.7

nag opt nlin lsq NAG C Library Manual

Section 8.2). If this output occurs frequently during later iterations of the run,
step limit should be set to a larger value.

R is printed if the approximate Hessian has been refactorized. If the diagonal
condition estimator of R indicates that the approximate Hessian is badly
conditioned, the approximate Hessian is refactorized using column interchanges.
If necessary, R is modified so that its diagonal condition estimator is bounded.

The final printout includes a listing of the status of every variable and constraint.

The following describes the printout for each variable.

Varbl gives the name (V) and index j, for j = 1, 2, ..., n of the variable.

State gives the state of the variable (FR if neither bound is in the active set, EQ if a fixed
variable, LL if on its lower bound, UL if on its upper bound). If Value lies outside
the upper or lower bounds by more than the feasibility tolerances specified by
the optional parameters lin feas tol and nonlin feas tol (see Section 8.2), State
will be ++ or -- respectively.

A key is sometimes printed before State to give some additional information
about the state of a variable.

A Alternative optimum possible. The variable is active at one of its bounds, but
its Lagrange Multiplier is essentially zero. This means that if the variable
were allowed to start moving away from its bound, there would be no change
to the objective function. The values of the other free variables might
change, giving a genuine alternative solution. However, if there are any
degenerate variables (labelled D), the actual change might prove to be zero,
since one of them could encounter a bound immediately. In either case, the
values of the Lagrange multipliers might also change.

D Degenerate. The variable is free, but it is equal to (or very close to) one of
its bounds.

I Infeasible. The variable is currently violating one of its bounds by more
than lin feas tol.

Value is the value of the variable at the final iteration.

Lower bound is the lower bound specified for the variable j. (None indicates that
bl[j − 1] ≤ inf bound, where inf bound is the optional parameter.)

Upper bound is the upper bound specified for the variable j. (None indicates that
bu[j − 1] ≥ inf bound, where inf bound is the optional parameter.)

Lagr Mult is the value of the Lagrange multiplier for the associated bound constraint. This
will be zero if State is FR unless bl[j−1] ≤ −inf bound and bu[j−1] ≥ inf bound,
in which case the entry will be blank. If x is optimal, the multiplier should be
non-negative if State is LL, and non-positive if State is UL.

Residual is the difference between the variable Value and the nearer of its (finite) bounds
bl[j − 1] and bu[j − 1]. A blank entry indicates that the associated variable is
not bounded (i.e., bl[j − 1] ≤ −inf bound and bu[j − 1] ≥ inf bound).

The meaning of the printout for linear and nonlinear constraints is the same as that given above for
variables, with ‘variable’ replaced by ‘constraint’, bl[j−1] and bu[j−1] are replaced by bl[n+j−1]
and bu[n+ j − 1] respectively, and with the following changes in the heading:
L Con gives the name (L) and index j, for j = 1, 2, ..., nL of the linear constraint.

N Con gives the name (N) and index (j − nL), for j = nL + 1, nL + 2, ..., nL + nN of the
nonlinear constraint.

The I key in the State column is printed for general linear constraints which currently violate one
of their bounds by more than lin feas tol and for nonlinear constraints which violate one of their
bounds by more than nonlin feas tol.

3.e04unc.8 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04unc

Note that movement off a constraint (as opposed to a variable moving away from its bound) can
be interpreted as allowing the entry in the Residual column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate
to this precision.

5. Comments

A list of possible error exits and warnings from nag opt nlin lsq is given in Section 9. The
termination criteria and accuracy of nag opt nlin lsq are considered in Section 10.

6. Example 1

This is based on Problem 57 in Hock and Schittkowski (1981) and involves the minimization of the
sum of squares function

F (x) =
1
2

44∑
i=1

{fi(x)}2,

where

fi(x) = yi − xi − (0.49− x1)e
−x2(ai−8)

and

i ai yi i ai yi

1 8 0.49 23 22 0.41
2 8 0.49 24 22 0.40
3 10 0.48 25 24 0.42
4 10 0.47 26 24 0.40
5 10 0.48 27 24 0.40
6 10 0.47 28 26 0.41
7 12 0.46 29 26 0.40
8 12 0.46 30 26 0.41
9 12 0.45 31 28 0.41
10 12 0.43 32 28 0.40
11 14 0.45 33 30 0.40
12 14 0.43 34 30 0.40
13 14 0.43 35 30 0.38
14 16 0.44 36 32 0.41
15 16 0.43 37 32 0.40
16 16 0.43 38 34 0.40
17 18 0.46 39 36 0.41
18 18 0.45 40 36 0.38
19 20 0.42 41 38 0.40
20 20 0.42 42 38 0.40
21 20 0.43 43 40 0.39
22 22 0.41 44 42 0.39

subject to the bounds

x1 ≥ 0.4
x2 ≥ −4.0

to the general linear constraint

x1 + x2 ≥ 1.0,

[NP3491/6] 3.e04unc.9

nag opt nlin lsq NAG C Library Manual

and to the nonlinear constraint

0.49x2 − x1x2 ≥ 0.09.

The initial point, which is infeasible, is

x0 = (0.4, 0.0)
T ,

and F (x0) = 0.002241.

The optimal solution (to five figures) is

x∗ = (0.41995, 1.28484)T ,

and F (x∗) = 0.01423. The nonlinear constraint is active at the solution.

This example shows the simple use of nag opt nlin lsq where default values are used for all optional
parameters. An example showing the use of optional parameters is given in Section 13. There is
one example program file, the main program of which calls both examples. The main program and
Example 1 are given below.

6.1. Program Text

/* nag_opt_nlin_lsq(e04unc) Example Program.
*
* Copyright 1998 Numerical Algorithms Group.
*
* Mark 5, 1998.
*
* Mark 6 revised, 2000.
*/
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <math.h>
#include <nage04.h>

static void objfun(Integer m, Integer n, double x[], double f[],
double fjac[], Integer tdfjac, Nag_Comm *comm);

static void confun(Integer n, Integer ncnlin, Integer needc[], double x[],
double conf[], double cjac[], Nag_Comm *comm);

static void user_print(const Nag_Search_State *st, Nag_Comm *comm);
static void ex1(void);
static void ex2(void);

static void objfun(Integer m, Integer n, double x[], double f[],
double fjac[], Integer tdfjac, Nag_Comm *comm)

{
#define FJAC(I,J) fjac[(I)*tdfjac + (J)]

/* Initialized data */
static double a[44] = {
8.0, 8.0, 10.0, 10.0, 10.0, 10.0, 12.0, 12.0, 12.0, 12.0, 14.0, 14.0,
14.0, 16.0, 16.0, 16.0, 18.0, 18.0, 20.0, 20.0, 20.0, 22.0, 22.0, 22.0,
24.0, 24.0, 24.0, 26.0, 26.0, 26.0, 28.0, 28.0, 30.0, 30.0, 30.0, 32.0,
32.0, 34.0, 36.0, 36.0, 38.0, 38.0, 40.0, 42.0 };

/* Local variables */
double temp;
Integer i;
double x0, x1, ai;

/* Function to evaluate the objective subfunctions
* and their 1st derivatives.
*/
x0 = x[0];

3.e04unc.10 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04unc

x1 = x[1];
for (i = 0; i < m; ++i)
{
/* Evaluate objective subfunction f(i+1) only if required */
if (comm->needf == i+1 || comm->needf == 0)
{

ai = a[i];
temp = exp(-x1 * (ai - 8.0));
f[i] = x0 + (.49 - x0) * temp;

}
if (comm->flag == 2)
{

FJAC(i,0) = 1.0 - temp;
FJAC(i,1) = -(.49 - x0) * (ai - 8.0) * temp;

}
}

} /* objfun */

static void confun(Integer n, Integer ncnlin, Integer needc[], double x[],
double conf[], double cjac[], Nag_Comm *comm)

{
#define CJAC(I,J) cjac[(I)*n + (J)]

/* Function to evaluate the nonlinear constraints and its 1st derivatives. */

if (comm->first == TRUE)
{
/* First call to confun. Set all Jacobian elements to zero.
* Note that this will only work when options.obj_deriv = TRUE
* (the default).
*/
CJAC(0,0) = CJAC(0,1) = 0.0;

}

if (needc[0] > 0)
{
conf[0] = -.09 - x[0]*x[1] + 0.49*x[1];

if (comm->flag == 2)
{

CJAC(0,0) = -x[1];
CJAC(0,1) = -x[0] + .49;

}
}

} /* confun */

main()
{

Vprintf("e04unc Example Program Results\n");
ex1();
ex2();
exit(EXIT_SUCCESS);

}

static void ex1(void)
{
#define NMAX 10
#define MMAX 50
#define NCLIN 10
#define NCNLIN 10
#define MAXBND NMAX+NCLIN+NCNLIN

/* Local variables */
double x[NMAX], a[NCLIN][NMAX];
double f[MMAX], y[MMAX], fjac[MMAX][NMAX];
double bl[MAXBND], bu[MAXBND];
double objf;
Integer tda, tdfjac;

[NP3491/6] 3.e04unc.11

nag opt nlin lsq NAG C Library Manual

Integer i, j, m, n, nclin, ncnlin;
static NagError fail;

fail.print = TRUE;

Vprintf("\nExample 1: default options\n");
Vscanf(" %*[^\n]"); /* Skip heading in data file */
Vscanf(" %*[^\n]");

/* Read problem dimensions */
Vscanf(" %*[^\n]");
Vscanf("%ld%ld%*[^\n]", &m, &n);
Vscanf(" %*[^\n]");
Vscanf("%ld%ld%*[^\n]", &nclin, &ncnlin);

if (m <= MMAX && n <= NMAX && nclin <= NCLIN && ncnlin <= NCNLIN)
{
tda = NMAX;
tdfjac = NMAX;
/* Read a, y, bl, bu and x from data file */

if (nclin > 0)
{

Vscanf(" %*[^\n]");
for (i = 0; i < nclin; ++i)
for (j = 0; j < n; ++j)
Vscanf("%lf",&a[i][j]);

}

/* Read the y vector of the objective */
Vscanf(" %*[^\n]");
for (i = 0; i < m; ++i)
Vscanf("%lf",&y[i]);

/* Read lower bounds */
Vscanf(" %*[^\n]");
for (i = 0; i < n + nclin + ncnlin; ++i)
Vscanf("%lf",&bl[i]);

/* Read upper bounds */
Vscanf(" %*[^\n]");
for (i = 0; i < n + nclin + ncnlin; ++i)
Vscanf("%lf",&bu[i]);

/* Read the initial point x */
Vscanf(" %*[^\n]");
for (i = 0; i < n; ++i)
Vscanf("%lf",&x[i]);

/* Solve the problem */
e04unc(m, n, nclin, ncnlin, (double*)a, tda, bl, bu, y, objfun,

confun, x, &objf, f, (double*)fjac, tdfjac, E04_DEFAULT,
NAGCOMM_NULL, &fail);

}

} /* ex1 */

6.2. Program Data

e04unc Example Program Data

Data for example 1

Values of m and n
44 2

Values of nclin and ncnln
1 1

Linear constraint matrix A
1.0 1.0

3.e04unc.12 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04unc

Objective vector y
0.49 0.49 0.48 0.47 0.48 0.47 0.46 0.46 0.45 0.43 0.45
0.43 0.43 0.44 0.43 0.43 0.46 0.45 0.42 0.42 0.43 0.41
0.41 0.40 0.42 0.40 0.40 0.41 0.40 0.41 0.41 0.40 0.40
0.40 0.38 0.41 0.40 0.40 0.41 0.38 0.40 0.40 0.39 0.39

Lower bounds
0.4 -4.0 1.0 0.0

Upper bounds
1.0e+25 1.0e+25 1.0e+25 1.0e+25

Initial estimate of x
0.4 0.0

6.3. Program Results

e04unc Example Program Results

Example 1: default options

Parameters to e04unc

Number of variables........... 2
Linear constraints............ 1 Nonlinear constraints......... 1

start................... Nag_Cold
step_limit.............. 2.00e+00 machine precision....... 1.11e-16
lin_feas_tol............ 1.05e-08 nonlin_feas_tol......... 1.05e-08
optim_tol............... 3.26e-12 linesearch_tol.......... 9.00e-01
crash_tol............... 1.00e-02 f_prec.................. 4.37e-15
inf_bound............... 1.00e+20 inf_step................ 1.00e+20
max_iter................ 50 minor_max_iter.......... 50
hessian.................. FALSE h_reset_freq............ 2
h_unit_init............. FALSE
f_diff_int.............. Automatic c_diff_int.............. Automatic
obj_deriv............... TRUE con_deriv............... TRUE
verify_grad....... Nag_SimpleCheck print_deriv............ Nag_D_Full
print_level......... Nag_Soln_Iter minor_print_level..... Nag_NoPrint
outfile................. stdout

Verification of the objective gradients.
--

All objective gradient elements have been set.

Simple Check:

The Jacobian seems to be ok.

The largest relative error was 1.04e-08 in subfunction 3

Verification of the constraint gradients.

All constraint gradient elements have been set.

Simple Check:

The Jacobian seems to be ok.

The largest relative error was 1.89e-08 in constraint 1

Maj Mnr Step Merit function Violtn Norm Gz Cond Hz
0 2 0.0e+00 2.224070e-02 3.6e-02 8.5e-02 1.0e+00
1 1 1.0e+00 1.455402e-02 9.8e-03 1.5e-03 1.0e+00
2 1 1.0e+00 1.436491e-02 7.2e-04 4.9e-03 1.0e+00

[NP3491/6] 3.e04unc.13

nag opt nlin lsq NAG C Library Manual

3 1 1.0e+00 1.427013e-02 9.2e-06 2.9e-03 1.0e+00
4 1 1.0e+00 1.422989e-02 3.6e-05 1.6e-04 1.0e+00
5 1 1.0e+00 1.422983e-02 6.4e-08 5.4e-07 1.0e+00
6 1 1.0e+00 1.422983e-02 9.8e-13 3.4e-09 1.0e+00

Exit from NP problem after 6 major iterations, 8 minor iterations.

Varbl State Value Lower Bound Upper Bound Lagr Mult Residual
V 1 FR 4.19953e-01 4.00000e-01 None 0.0000e+00 1.9953e-02
V 2 FR 1.28485e+00 -4.00000e+00 None 0.0000e+00 5.2848e+00

L Con State Value Lower Bound Upper Bound Lagr Mult Residual
L 1 FR 1.70480e+00 1.00000e+00 None 0.0000e+00 7.0480e-01

N Con State Value Lower Bound Upper Bound Lagr Mult Residual
N 1 LL -9.76774e-13 0.00000e+00 None 3.3358e-02 -9.7677e-13

Optimal solution found.

Final objective value = 1.4229835e-02

7. Further Description

nag opt nlin lsq implements a sequential quadratic programmming (SQP) method incorporating
an augmented Lagrangian merit function and a BFGS (Broyden–Fletcher–Goldfarb–Shanno) and
is based on nag opt nlp (e04ucc). The documentation for nag opt nlp (e04ucc) and nag opt lin lsq
(e04ncc) should be consulted for details of the method.

8. Optional Parameters

A number of optional input and output parameters to nag opt nlin lsq are available through the
structure argument options, type Nag E04 Opt. A parameter may be selected by assigning an
appropriate value to the relevant structure member; those parameters not selected will be assigned
default values. If no use is to be made of any of the optional parameters the user should use
the NAG defined null pointer, E04 DEFAULT, in place of options when calling nag opt nlin lsq; the
default settings will then be used for all parameters.

Before assigning values to options directly the structure must be initialized by a call to the function
nag opt init (e04xxc). Values may then be assigned to the structure members in the normal C
manner.

Option settings may also be read from a text file using the function nag opt read (e04xyc) in which
case initialization of the options structure will be performed automatically if not already done. Any
subsequent direct assignment to the options structure must not be preceded by initialization.

If assignment of functions and memory to pointers in the options structure is required, then this
must be done directly in the calling program; they cannot be assigned using nag opt read (e04xyc).

8.1. Optional Parameter Checklist and Default Values

For easy reference, the following list shows the members of options which are valid for
nag opt nlin lsq together with their default values where relevant. The number ε is a generic
notation for machine precision (see nag machine precision (X02AJC)).

3.e04unc.14 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04unc

Nag Start start Nag Cold
Boolean list TRUE
Nag PrintType print level Nag Soln Iter
Nag PrintType minor print level Nag NoPrint
char outfile[80] stdout
void (*print fun)() NULL
Boolean obj deriv TRUE
Boolean con deriv TRUE
Nag GradChk verify grad Nag SimpleCheck
Nag DPrintType print deriv Nag D Full
Integer obj check start 1
Integer obj check stop n
Integer con check start 1
Integer con check stop n
double f diff int Computed automatically
double c diff int Computed automatically
Integer max iter max(50,3(n+nclin)+10ncnlin)
Integer minor max iter max(50,3(n+nclin+ncnlin))
double f prec ε0.9

double optim tol f prec0.8

double lin feas tol
√
ε

double nonlin feas tol ε0.33 or
√
ε

double linesearch tol 0.9
double step limit 2.0
double crash tol 0.01
double inf bound 1020

double inf step max(inf bound,1020)
double *conf size ncnlin
double *conjac size ncnlin∗n
Integer *state size n+nclin+ncnlin
double *lambda size n+nclin+ncnlin
double *h size n∗n
Boolean hessian FALSE
Boolean h unit init FALSE
Integer h reset freq 2
Integer iter
Integer nf

8.2. Description of Optional Parameters

start – Nag Start Default = Nag Cold
Input: specifies how the initial working set is chosen in both the procedure for finding a
feasible point for the linear constraints and bounds, and in the first QP subproblem thereafter.
With start = Nag Cold, nag opt nlin lsq chooses the initial working set based on the values
of the variables and constraints at the initial point. Broadly speaking, the initial working set
will include equality constraints and bounds or inequality constraints that violate or ‘nearly’
satisfy their bounds (to within the value of the optional parameter crash tol; see below).

With start = Nag Warm, the user must provide a valid definition of every array element
of the optional parameters state, lambda and h (see below for their definitions). The state
values associated with bounds and linear constraints determine the initial working set of the
procedure to find a feasible point with respect to the bounds and linear constraints. The
state values associated with nonlinear constraints determine the initial working set of the
first QP subproblem after such a feasible point has been found. nag opt nlin lsq will override
the user’s specification of state if necessary, so that a poor choice of the working set will not
cause a fatal error. For instance, any elements of state which are set to −2,−1 or 4 will be
reset to zero, as will any elements which are set to 3 when the corresponding elements of bl
and bu are not equal. A warm start will be advantageous if a good estimate of the initial
working set is available – for example, when nag opt nlin lsq is called repeatedly to solve
related problems.

[NP3491/6] 3.e04unc.15

nag opt nlin lsq NAG C Library Manual

Constraint: options.start = Nag Cold or Nag Warm.

list – Boolean Default = TRUE

Input: if options.list = TRUE the parameter settings in the call to nag opt nlin lsq will be
printed.

print level – Nag PrintType Default = Nag Soln Iter

Input: the level of results printout produced by nag opt nlin lsq at each major iteration. The
following values are available.

Nag NoPrint No output.

Nag Soln The final solution.

Nag Iter One line of output for each iteration.

Nag Iter Long A longer line of output for each iteration with more information
(line exceeds 80 characters).

Nag Soln Iter The final solution and one line of output for each iteration.

Nag Soln Iter Long The final solution and one long line of output for each iteration
(line exceeds 80 characters).

Nag Soln Iter Const Nag Soln Iter Long with the objective function, the values of the
variables, the Euclidean norm of the nonlinear constraint violations,
the nonlinear constraint values, c, and the linear constraint values
ALx also printed at each iteration.

Nag Soln Iter Full As Nag Soln Iter Const with the diagonal elements of the upper
triangular matrix T associated with the TQ factorization (see (5)
in Section 7.1 of the documentation for nag opt nlp (e04ucc)) of
the QP working set, and the diagonal elements of R, the triangular
factor of the transformed and re-ordered Hessian (see (6) in Section
7.1 of the documentation for nag opt nlp (e04ucc)).

Details of each level of results printout are described in Section 8.3.
Constraint: options.print level = Nag NoPrint, Nag Soln, Nag Iter, Nag Soln Iter,
Nag Iter Long, Nag Soln Iter Long, Nag Soln Iter Const or Nag Soln Iter Full.

minor print level – Nag PrintType Default = Nag NoPrint

Input: the level of results printout produced by the minor iterations of nag opt nlin lsq (i.e.,
the iterations of the QP subproblem). The following values are available.

Nag NoPrint No output.

Nag Soln The final solution.

Nag Iter One line of output for each iteration.

Nag Iter Long A longer line of output for each iteration with more information
(line exceeds 80 characters).

Nag Soln Iter The final solution and one line of output for each iteration.

Nag Soln Iter Long The final solution and one long line of output for each iteration
(line exceeds 80 characters).

Nag Soln Iter Const As Nag Soln Iter Long with the Lagrange multipliers, the variables
x, the constraint values ALx and the constraint status also printed
at each iteration.

Nag Soln Iter Full As Nag Soln Iter Const with the diagonal elements of the upper
triangular matrix T associated with the TQ factorization (see (4)
in Section 7.2 of the documentation for nag opt lin lsq (e04ncc)) of
the working set, and the diagonal elements of the upper triangular
matrix R printed at each iteration.

3.e04unc.16 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04unc

Details of each level of results printout are described in Section 8.3 of the function
documentation for nag opt lin lsq (e04ncc). (options.minor print level in the present function
is equivalent to options.print level is nag opt lin lsq.)
Constraint: options.minor print level = Nag NoPrint, Nag Soln, Nag Iter, Nag Soln Iter,
Nag Iter Long, Nag Soln Iter Long, Nag Soln Iter Const or Nag Soln Iter Full.

outfile – char[80] Default = stdout

Input: the name of the file to which results should be printed. If options.outfile[0] = ’\0’ then
the stdout stream is used.

print fun – pointer to function Default = NULL

Input: printing function defined by the user; the prototype of print fun is

void (*print_fun)(const Nag_Search_State *st, Nag_Comm *comm);

See Section 8.3.1 below for further details.

obj deriv – Boolean Default = TRUE

Input: this argument indicates whether all elements of the objective Jacobian are provided
by the user in function objfun. If none or only some of the elements are being supplied by
objfun then obj deriv should be set to FALSE.

Whenever possible all elements should be supplied, since nag opt nlin lsq is more reliable and
will usually be more efficient when all derivatives are exact.

If obj deriv = FALSE, nag opt nlin lsq will approximate unspecified elements of the objective
Jacobian, using finite differences. The computation of finite-difference approximations usually
increases the total run-time, since a call to objfun is required for each unspecified element.
Furthermore, less accuracy can be attained in the solution (see Chapter 8 of Gill et al (1981),
for a discussion of limiting accuracy).

At times, central differences are used rather than forward differences, in which case twice as
many calls to objfun are needed. (The switch to central differences is not under the user’s
control.)

con deriv – Boolean Default = TRUE

Input: this argument indicates whether all elements of the constraint Jacobian are provided
by the user in function confun. If none or only some of the derivatives are being supplied by
confun then con deriv should be set to FALSE.

Whenever possible all elements should be supplied, since nag opt nlin lsq is more reliable and
will usually be more efficient when all derivatives are exact.

If con deriv = FALSE, nag opt nlin lsq will approximate unspecified elements of the
constraint Jacobian. One call to confun is needed for each variable for which partial derivatives
are not available. For example, if the constraint Jacobian has the form




∗ ∗ ∗ ∗
∗ ? ? ∗
∗ ∗ ? ∗
∗ ∗ ∗ ∗




where ‘∗’ indicates an element provided by the user and ‘?’ indicates an unspecified element,
nag opt nlin lsq will call confun twice: once to estimate the missing element in column 2, and
again to estimate the two missing elements in column 3. (Since columns 1 and 4 are known,
they require no calls to confun.)

At times, central differences are used rather than forward differences, in which case twice as
many calls to confun are needed. (The switch to central differences is not under the user’s
control.)

verify grad – Nag GradChk Default = Nag SimpleCheck

Input: specifies the level of derivative checking to be performed by nag opt nlin lsq on the
gradient elements computed by the user-supplied functions objfun and confun.

The following values are available:

[NP3491/6] 3.e04unc.17

nag opt nlin lsq NAG C Library Manual

Nag NoCheck No derivative checking is performed.

Nag SimpleCheck Perform a simple check of both the objective and constraint
gradients.

Nag CheckObj Perform a component check of the objective gradient elements.

Nag CheckCon Perform a component check of the constraint gradient elements.

Nag CheckObjCon Perform a component check of both the objective and constraint
gradient elements.

Nag XSimpleCheck Perform a simple check of both the objective and constraint
gradients at the initial value of x specified in x.

Nag XCheckObj Perform a component check of the objective gradient elements at
the initial value of x specified in x.

Nag XCheckCon Perform a component check of the constraint gradient elements at
the initial value of x specified in x.

Nag XCheckObjCon Perform a component check of both the objective and constraint
gradient elements at the initial value of x specified in x.

If verify grad = Nag SimpleCheck or Nag XSimpleCheck then a simple ‘cheap’ test is
performed, which requires only one call to objfun and one call to confun. If verify grad
= Nag CheckObj, Nag CheckCon or Nag CheckObjCon then a more reliable (but more
expensive) test will be made on individual gradient components. This component check will be
made in the range specified by the optional parameter obj check start and obj check stop for
the objective gradient, with default values 1 and n, respectively. For the constraint gradient
the range is specified by con check start and con check stop, with default values 1 and n.

The procedure for the derivative check is based on finding an interval that produces an
acceptable estimate of the second derivative, and then using that estimate to compute an
interval that should produce a reasonable forward-difference approximation. The gradient
element is then compared with the difference approximation. (The method of finite difference
interval estimation is based on Gill et al (1983).) The result of the test is printed out by
nag opt nlin lsq if the optional parameter print deriv 	= Nag D NoPrint.
Constraint: options.verify grad = Nag NoCheck, Nag SimpleCheck, Nag CheckObj,
Nag CheckCon, Nag CheckObjCon, Nag XSimpleCheck, Nag XCheckObj, Nag XCheckCon
or Nag XCheckObjCon.

print deriv – Nag DPrintType Default = Nag D Full

Input: controls whether the results of any derivative checking are printed out (see optional
parameter verify grad).

If a component derivative check has been carried out, then full details will be printed if
print deriv = Nag D Full. For a printout summarizing the results of a component derivative
check set print deriv = Nag D Sum. If only a simple derivative check is requested then
Nag D Sum and Nag D Full will give the same level of output. To prevent any printout from
a derivative check set print deriv = Nag D NoPrint.
Constraint: options.print deriv = Nag D NoPrint, Nag D Sum or Nag D Full.

obj check start – Integer Default = 1
obj check stop – Integer Default = n

These options take effect only when options.verify grad is equal to one of Nag CheckObj,
Nag CheckObjCon, Nag XCheckObj or Nag XCheckObjCon.

Input: these parameters may be used to control the verification of Jacobian elements
computed by the function objfun. For example, if the first 30 columns of the objective
Jacobian appeared to be correct in an earlier run, so that only column 31 remains questionable,
it is reasonable to specify obj check start = 31. If the first 30 variables appear linearly in
the subfunctions, so that the corresponding Jacobian elements are constant, the above choice
would also be appropriate.
Constraint: 1 ≤ options.obj check start ≤ options.obj check stop ≤ n.

3.e04unc.18 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04unc

con check start – Integer Default = 1
con check stop – Integer Default = n

These options take effect only when options.verify grad is equal to one of Nag CheckCon,
Nag CheckObjCon, Nag XCheckCon or Nag XCheckObjCon.
Input: these parameters may be used to control the verification of the Jacobian elements
computed by the function confun. For example, if the first 30 columns of the constraint
Jacobian appeared to be correct in an earlier run, so that only column 31 remains questionable,
it is reasonable to specify con check start = 31.
Constraint: 1 ≤ options.con check start ≤ options.con check stop ≤ n.

f diff int – double Default = computed automatically
Input: defines an interval used to estimate derivatives by finite differences in the following
circumstances:

(a) For verifying the objective and/or constraint gradients (see the description of the optional
parameter verify grad).

(b) For estimating unspecified elements of the objective and/or constraint Jacobian matrix.
In general, using the notation r = options.f diff int, a derivative with respect to the jth
variable is approximated using the interval δj , where δj = r(1 + |x̂j |), with x̂ the first point
feasible with respect to the bounds and linear constraints. If the functions are well scaled,
the resulting derivative approximation should be accurate to O(r). See Gill et al (1981) for
a discussion of the accuracy in finite difference approximations.
If a difference interval is not specified by the user, a finite difference interval will be computed
automatically for each variable by a procedure that requires up to six calls of confun and
objfun for each element. This option is recommended if the function is badly scaled or
the user wishes to have nag opt nlin lsq determine constant elements in the objective and
constraint gradients (see the descriptions of confun and objfun in Section 4).
Constraint: ε ≤ options.f diff int < 1.0.

c diff int – double Default = computed automatically
Input: if the algorithm switches to central differences because the forward-difference
approximation is not sufficiently accurate the value of c diff int is used as the difference
interval for every element of x. The switch to central differences is indicated by C at the end
of each line of intermediate printout produced by the major iterations (see Section 4.1). The
use of finite-differences is discussed under the option f diff int.
Constraint: ε ≤ options.c diff int < 1.0.

max iter – Integer Default = max(50,3(n+nclin)+10ncnlin)
Input: the maximum number of major iterations allowed before termination.
Constraint: options.max iter ≥ 0.

minor max iter – Integer Default = max(50,3(n+nclin+ncnlin))
Input: the maximum number of iterations for finding a feasible point with respect to the
bounds and linear constraints (if any). The value also specifies the maximum number of
minor iterations for the optimality phase of each QP subproblem.
Constraint: options.minor max iter ≥ 0.

f prec – double Default = ε0.9

Input: this parameter defines εr, which is intended to be a measure of the accuracy with
which the problem functions F (x) and c(x) can be computed.
The value of εr should reflect the relative precision of 1 + |F (x)|; i.e., εr acts as a relative
precision when |F | is large, and as an absolute precision when |F | is small. For example, if
F (x) is typically of order 1000 and the first six significant digits are known to be correct, an
appropriate value for εr would be 10

−6. In contrast, if F (x) is typically of order 10−4 and
the first six significant digits are known to be correct, an appropriate value for εr would be
10−10. The choice of εr can be quite complicated for badly scaled problems; see Chapter 8 of
Gill et al (1981), for a discussion of scaling techniques. The default value is appropriate for
most simple functions that are computed with full accuracy. However, when the accuracy of
the computed function values is known to be significantly worse than full precision, the value

[NP3491/6] 3.e04unc.19

nag opt nlin lsq NAG C Library Manual

of εr should be large enough so that nag opt nlin lsq will not attempt to distinguish between
function values that differ by less than the error inherent in the calculation.
Constraint: ε ≤ options.f prec < 1.0.

optim tol – double Default = f prec0.8

Input: specifies the accuracy to which the user wishes the final iterate to approximate a
solution of the problem. Broadly speaking, optim tol indicates the number of correct figures
desired in the objective function at the solution. For example, if optim tol is 10−6 and
nag opt nlin lsq terminates successfully, the final value of F should have approximately six
correct figures.

nag opt nlin lsq will terminate successfully if the iterative sequence of x-values is judged to
have converged and the final point satisfies the first-order Kuhn–Tucker conditions (see Section
7.1 of the documentation for nag opt nlp (e04ucc)). The sequence of iterates is considered to
have converged at x if

α‖p‖ ≤ √
r(1 + ‖x‖), (2)

where p is the search direction, α the step length, and r is the value of optim tol. An iterate
is considered to satisfy the first-order conditions for a minimum if

‖ZT gFR‖ ≤ √
r(1 + max(1 + |F (x)|, ‖gFR‖)) (3)

and

|resj | ≤ ftol for all j, (4)

where ZT gFR is the projected gradient (see Section 7.1 of the documentation for nag opt nlp
(e04ucc)), gFR is the gradient of F (x) with respect to the free variables, resj is the violation
of the jth active nonlinear constraint, and ftol is the value of the optional parameter
nonlin feas tol.
Constraint: options.f prec ≤ options.optim tol < 1.0.

lin feas tol – double Default =
√
ε

Input: defines the maximum acceptable absolute violations in the linear constraints at a
‘feasible’ point; i.e., a linear constraint is considered satisfied if its violation does not exceed
lin feas tol.

On entry to nag opt nlin lsq, an iterative procedure is executed in order to find a point that
satisfies the linear constraints and bounds on the variables to within the tolerance specified by
lin feas tol. All subsequent iterates will satisfy the constraints to within the same tolerance
(unless lin feas tol is comparable to the finite difference interval).

This tolerance should reflect the precision of the linear constraints. For example, if the
variables and the coefficients in the linear constraints are of order unity, and the latter are
correct to about 6 decimal digits, it would be appropriate to specify lin feas tol as 10−6.
Constraint: ε ≤ options.lin feas tol < 1.0.

nonlin feas tol – double Default = ε0.33 or
√
ε

The default is ε0.33 if the optional parameter con deriv = FALSE, and
√
ε otherwise.

Input: defines the maximum acceptable absolute violations in the nonlinear constraints at
a ‘feasible’ point; i.e., a nonlinear constraint is considered satisfied if its violation does not
exceed nonlin feas tol.

This tolerance defines the largest constraint violation that is acceptable at an optimal point.
Since nonlinear constraints are generally not satisfied until the final iterate, the value of
nonlin feas tol acts as a partial termination criterion for the iterative sequence generated by
nag opt nlin lsq (see also the discussion of the optional parameter optim tol).

This tolerance should reflect the precision of the nonlinear constraint functions calculated by
confun.
Constraint: ε ≤ options.nonlin feas tol < 1.0.

3.e04unc.20 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04unc

linesearch tol – double Default = 0.9
Input: controls the accuracy with which the step α taken during each iteration approximates
a minimum of the merit function along the search direction (the smaller the value of
linesearch tol, the more accurate the line search). The default value requests an inaccurate
search, and is appropriate for most problems, particularly those with any nonlinear
constraints.
If there are no nonlinear constraints, a more accurate search may be appropriate when it is
desirable to reduce the number of major iterations – for example, if the objective function is
cheap to evaluate, or if a substantial number of derivatives are unspecified.
Constraint: 0.0 ≤ options.linesearch tol < 1.0.

step limit – double Default = 2.0
Input: specifies the maximum change in the variables at the first step of the line search. In
some cases, such as F (x) = aebx or F (x) = axb, even a moderate change in the elements of x
can lead to floating-point overflow. The parameter step limit is therefore used to encourage
evaluation of the problem functions at meaningful points. Given any major iterate x, the first
point x̃ at which F and c are evaluated during the line search is restricted so that

‖x̃− x‖2 ≤ r(1 + ‖x‖2),

where r is the value of step limit.
The line search may go on and evaluate F and c at points further from x if this will result in
a lower value of the merit function. In this case, the character L is printed at the end of each
line of output produced by the major iterations (see Section 4.1). If L is printed for most of
the iterations, step limit should be set to a larger value.
Wherever possible, upper and lower bounds on x should be used to prevent evaluation of
nonlinear functions at wild values. The default value of step limit = 2.0 should not affect
progress on well-behaved functions, but values such as 0.1 or 0.01 may be helpful when rapidly
varying functions are present. If a small value of step limit is selected, a good starting point
may be required. An important application is to the class of nonlinear least-squares problems.
Constraint: options.step limit > 0.0.

crash tol – double Default = 0.01
Input: crash tol is used during a ‘cold start’ when nag opt nlin lsq selects an initial working
set (options.start = Nag Cold). The initial working set will include (if possible) bounds
or general inequality constraints that lie within crash tol of their bounds. In particular, a
constraint of the form aT

j x ≥ l will be included in the initial working set if |aT
j x−l| ≤ crash tol

× (1 + |l|).
Constraint: 0.0 ≤ options.crash tol ≤ 1.0.

inf bound – double Default = 1020

Input: inf bound defines the ‘infinite’ bound in the definition of the problem constraints. Any
upper bound greater than or equal to inf bound will be regarded as plus infinity (and similarly
any lower bound less than or equal to −inf bound will be regarded as minus infinity).
Constraint: options.inf bound > 0.0.

inf step – double Default = max(inf bound,1020)
Input: inf step specifies the magnitude of the change in variables that will be considered a
step to an unbounded solution. If the change in x during an iteration would exceed the value
of inf step, the objective function is considered to be unbounded below in the feasible region.
Constraint: options.inf step > 0.0.

conf – double ∗ Default memory = ncnlin

Input: ncnlin values of memory will be automatically allocated by nag opt nlin lsq and this
is the recommended method of use of options.conf. However a user may supply memory from
the calling program.
Output: if ncnlin > 0, conf[i− 1] contains the value of the ith nonlinear constraint function
ci at the final iterate.
If ncnlin = 0 then conf will not be referenced.

[NP3491/6] 3.e04unc.21

nag opt nlin lsq NAG C Library Manual

conjac – double ∗ Default memory = ncnlin∗n
Input: ncnlin∗n values of memory will be automatically allocated by nag opt nlin lsq and this
is the recommended method of use of options.conjac. However a user may supply memory
from the calling program.
Output: if ncnlin > 0, conjac contains the Jacobian matrix of the nonlinear constraint
functions at the final iterate, i.e., conjac[(i − 1) = ∗n+j − 1] contains the partial derivative
of the ith constraint function with respect to the jth variable, for i = 1, 2, . . . ,ncnlin;
j = 1, 2, . . . ,n. (See the discussion of the parameter conjac under confun.)
If ncnlin = 0 then conjac will not be referenced.

state – Integer ∗ Default memory = n+nclin+ncnlin
Input: state need not be set if the default option of start = Nag Cold is used as
n+nclin+ncnlin values of memory will be automatically allocated by nag opt nlin lsq.
If the option start = Nag Warm has been chosen, state must point to a minimum of
n+nclin+ncnlin elements of memory. This memory will already be available if the options
structure has been used in a previous call to nag opt nlin lsq from the calling program, with
start = Nag Cold and the same values of n, nclin and ncnlin. If a previous call has not been
made, sufficient memory must be allocated by the user.
When a ‘warm start’ is chosen state should specify the status of the bounds and linear
constraints at the start of the feasibility phase. More precisely, the first n elements of state
refer to the upper and lower bounds on the variables, the next nclin elements refer to the
general linear constraints and the following ncnlin elements refer to the nonlinear constraints.
Possible values for state[j] are as follows:

state[j] Meaning

0 The corresponding constraint is not in the initial QP working set.

1 This inequality constraint should be in the initial working set at its lower bound.

2 This inequality constraint should be in the initial working set at its upper bound.

3 This equality constraint should be in the initial working set. This value must
only be specified if bl[j] = bu[j].

The values −2, −1 and 4 are also acceptable but will be reset to zero by the function, as
will any elements which are set to 3 when the corresponding elements of bl and bu are not
equal. If nag opt nlin lsq has been called previously with the same values of n, nclin and
ncnlin, then state already contains satisfactory information. (See also the description of the
optional parameter start.) The function also adjusts (if necessary) the values supplied in x
to be consistent with the values supplied in state.
Constraint: −2 ≤ options.state[j] ≤ 4, for j = 0, 1, 2, . . . ,n+nclin+ncnlin−1.
Output: the status of the constraints in the QP working set at the point returned in x. The
significance of each possible value of state[j] is as follows:

state[j] Meaning

−2 The constraint violates its lower bound by more than the appropriate feasibility
tolerance (see the options lin feas tol and nonlin feas tol). This value can occur
only when no feasible point can be found for a QP subproblem.

−1 The constraint violates its upper bound by more than the appropriate feasibility
tolerance (see the options lin feas tol and nonlin feas tol). This value can occur
only when no feasible point can be found for a QP subproblem.

0 The constraint is satisfied to within the feasibility tolerance, but is not in the
QP working set.

1 This inequality constraint is included in the QP working set at its lower bound.

2 This inequality constraint is included in the QP working set at its upper bound.

3 This constraint is included in the working set as an equality. This value of state
can occur only when bl[j] = bu[j].

3.e04unc.22 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04unc

lambda – double ∗ Default memory = n+nclin+ncnlin

Input: lambda need not be set if the default option start = Nag Cold is used as
n+nclin+ncnlin values of memory will be automatically allocated by nag opt nlin lsq.

If the option start = Nag Warm has been chosen, lambda must point to a minimum of
n+nclin+ncnlin elements of memory. This memory will already be available if the options
structure has been used in a previous call to nag opt nlin lsq from the calling program, with
start = Nag Cold and the same values of n, nclin and ncnlin. If a previous call has not been
made with sufficient memory must be allocated by the user.

When a ‘warm start’ is chosen lambda[j − 1] must contain a multiplier estimate for each
nonlinear constraint with a sign that matches the status of the constraint specified by state,
for j = n+nclin+1, n+nclin+2,. . ., n+nclin+ncnlin. The remaining elements need not be set.

Note that if the jth constraint is defined as ‘inactive’ by the initial value of the state array
(i.e., state[j − 1] = 1), lambda[j − 1] should be zero; if the jth constraint is an inequality
active at its lower bound (i.e., state[j − 1] = 0), lambda[j − 1] should be non-negative; if the
jth constraint is an inequality active at its upper bound (i.e., state[j− 1] = 2), lambda[j− 1]
should be non-positive. If necessary, the function will modify lambda to match these rules.
Output: the values of the Lagrange multipliers from the last QP subproblem. lambda[j − 1]
should be non-negative if state[j − 1] = 1 and non-positive if state[j − 1] = 2.

h – double ∗ Default memory = n∗n
Input: h need not be set if the default option of start = Nag Cold is used as n∗n values of
memory will be automatically allocated by nag opt nlin lsq.

If the option start = Nag Warm has been chosen, h must point to a minimum of n∗n elements
of memory. This memory will already be available if the calling program has used the options
structure in a previous call to nag opt nlin lsq with start = Nag Cold and the same value of
n. If a previous call has not been made sufficient memory must be allocated to by the user.

When start = Nag Warm is chosen the memory pointed to by h must contain the upper
triangular Cholesky factor R of the initial approximation of the Hessian of the Lagrangian
function, with the variables in the natural order. Elements not in the upper triangular part
of R are assumed to be zero and need not be assigned. If a previous call has been made, with
hessian = TRUE, then h will already have been set correctly.

Output: if hessian = FALSE, h contains the upper triangular Cholesky factor R of QT H̃Q,
an estimate of the transformed and re-ordered Hessian of the Lagrangian at x (see (6) in
Section 7.1 of the documentation for nag opt nlp (e04ucc)).

If hessian = TRUE, h contains the upper triangular Cholesky factor R of H, the approximate
(untransformed) Hessian of the Lagrangian, with the variables in the natural order.

hessian – Boolean Default = FALSE

Input: controls the contents of the optional parameter h on return from nag opt nlin lsq.
nag opt nlin lsq works exclusively with the transformed and re-ordered HessianHQ, and hence
extra computation is required to form the Hessian itself. If hessian = FALSE, h contains the
Cholesky factor of the transformed and re-ordered Hessian. If hessian = TRUE, the Cholesky
factor of the approximate Hessian itself is formed and stored in h. This information is required
by nag opt nlin lsq if the next call to nag opt nlin lsq will be made with optional parameter
start = Nag Warm.

h unit init – Boolean Default = FALSE

Input: if h unit init = FALSE the initial value of the upper triangular matrix R is set to JTJ ,
where J denotes the objective Jacobian matrix ∇f(x). JTJ is often a good approximation
to the objective Hessian matrix ∇2F (x). If h unit init = TRUE then the initial value of R is
the unit matrix.

h reset freq – Integer Default = 2

Input: this parameter allows the user to reset the approximate Hessian matrix to JTJ every
h reset freq iterations, where J is the objective Jacobian matrix ∇f(x).

At any point where there are no nonlinear constraints active and the values of f are small in
magnitude compared to the norm of J , JTJ will be a good approximation to the objective

[NP3491/6] 3.e04unc.23

nag opt nlin lsq NAG C Library Manual

Hessian matrix ∇2F (x). Under these circumstances, frequent resetting can significantly
improve the convergence rate of nag opt nlin lsq.
Resetting is suppressed at any iteration during which there are nonlinear constraints active.
Constraint: options.h reset freq > 0.

iter – Integer
Output: the number of major iterations which have been performed in nag opt nlin lsq.

nf – Integer
Output: the number of times the objective function has been evaluated (i.e., number of calls
of objfun). The total excludes any calls made to objfun for purposes of derivative checking.

8.3. Description of Printed Output

The level of printed output can be controlled by the user with the structure members options.list,
options.print deriv, options.print level and options.minor print level (see Section 8.2). If list =
TRUE then the parameter values to nag opt nlin lsq are listed, followed by the result of any
derivative check if print deriv = Nag D Sum or Nag D Full. The printout of results is governed
by the values of print level and minor print level. The default of print level = Nag Soln Iter
and minor print level = Nag NoPrint provides a single line of output at each iteration and the
final result. This section describes all of the possible levels of results printout available from
nag opt nlin lsq.

If a simple derivative check, verify grad = Nag SimpleCheck, is requested then a statement
indicating success or failure is given. The largest error found in the objective and the constraint
Jacobian are also output.
When a component derivative check (see verify grad in Section 8.2) is selected the element with
the largest relative error is identified for the objective and the constraint Jacobian.
If print deriv = Nag D Full then the following results are printed for each component:

x[i] the element of x.

dx[i] the optimal finite difference interval.

Jacobian value the Jacobian element.

Difference approxn. the finite difference approximation.

Itns the number of trials performed to find a suitable difference interval.

The indicator, OK or BAD?, states whether the Jacobian element and finite difference approximation
are in agreement. If the derivatives are believed to be in error nag opt nlin lsq will exit with
fail.code set to NE DERIV ERRORS.

When print level = Nag Iter or Nag Soln Iter the following line of output is produced at every
major iteration. In all cases, the values of the quantities printed are those in effect on completion
of the given iteration.

Maj is the major iteration count.

Mnr is the number of minor iterations required by the feasibility and optimality phases
of the QP subproblem. Generally, Mnr will be 1 in the later iterations, since
theoretical analysis predicts that the correct active set will be identified near the
solution (see Section 7 of the documentation for nag opt nlp (e04ucc)). Note
that Mnr may be greater than the optional parameter minor max iter (default
value = max(50,3(n+ nL+ nN)); see Section 8.2) if some iterations are required
for the feasibility phase.

Step is the step taken along the computed search direction. On reasonably well-
behaved problems, the unit step will be taken as the solution is approached.

Merit function is the value of the augmented Lagrangian merit function at the current iterate.
This function will decrease at each iteration unless it was necessary to increase
the penalty parameters (see Section 7.3 of the documentation for nag opt nlp

3.e04unc.24 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04unc

(e04ucc)). As the solution is approached, Merit function will converge to the
value of the objective function at the solution.

If the QP subproblem does not have a feasible point (signified by I at
the end of the current output line), the merit function is a large multiple
of the constraint violations, weighted by the penalty parameters. During
a sequence of major iterations with infeasible subproblems, the sequence of
Merit Function values will decrease monotonically until either a feasible
subproblem is obtained or nag opt nlin lsq terminates with the error indicator
NW NONLIN NOT FEASIBLE (no feasible point could be found for the
nonlinear constraints).

If no nonlinear constraints are present (i.e., ncnlin = 0), this entry contains
Objective, the value of the objective function F (x). The objective function
will decrease monotonically to its optimal value when there are no nonlinear
constraints.

Violtn is the Euclidean norm of the residuals of constraints that are violated or in the
predicted active set (not printed if ncnlin is zero). Violtn will be approximately
zero in the neighbourhood of a solution.

Norm Gz is ‖ZT gFR‖, the Euclidean norm of the projected gradient (see Section 7.1 of the
documentation for nag opt nlp (e04ucc)). Norm Gz will be approximately zero in
the neighbourhood of a solution.

Cond Hz is a lower bound on the condition number of the projected Hessian approximation
HZ (HZ = ZTHFRZ = RT

ZRZ ; see (6) and (11) in Section 7.1 and Section 7.2,
respectively, of the documentation for nag opt nlp (e04ucc)). The larger this
number, the more difficult the problem.

The line of output may be terminated by one of the following characters:

M is printed if the quasi-Newton update was modified to ensure that the Hessian
approximation is positive-definite (see Section 7.4 of the documentation for
nag opt nlp (e04ucc)).

I is printed if the QP subproblem has no feasible point.

C is printed if central differences were used to compute the unspecified objective and
constraint gradients. If the value of Step is zero, the switch to central differences
was made because no lower point could be found in the line search. (In this
case, the QP subproblem is re-solved with the central difference gradient and
Jacobian.) If the value of Step is non-zero, central differences were computed
because Norm Gz and Violtn imply that x is close to a Kuhn–Tucker point (see
Section 7.1 of the documentation for nag opt nlp (e04ucc)).

L is printed if the line search has produced a relative change in x greater than
the value defined by the optional parameter step limit (default value = 2.0; see
Section 8.2). If this output occurs frequently during later iterations of the run,
step limit should be set to a larger value.

R is printed if the approximate Hessian has been refactorized. If the diagonal
condition estimator of R indicates that the approximate Hessian is badly
conditioned, the approximate Hessian is refactorized using column interchanges.
If necessary, R is modified so that its diagonal condition estimator is bounded.

If print level = Nag Iter Long, Nag Soln Iter Long, Nag Soln Iter Const or Nag Soln Iter Full the
line of printout at every iteration is extended to give the following additional information. (Note
this longer line extends over more than 80 characters.)

Nfun is the cumulative number of evaluations of the objective function needed for
the line search. Evaluations needed for the estimation of the gradients by finite
differences are not included. Nfun is printed as a guide to the amount of work
required for the linesearch.

[NP3491/6] 3.e04unc.25

nag opt nlin lsq NAG C Library Manual

Nz is the number of columns of Z (see Section 7.1 of the documentation for
nag opt nlp (e04ucc)). The value of Nz is the number of variables minus the
number of constraints in the predicted active set; i.e., Nz = n−(Bnd+Lin+Nln).

Bnd is the number of simple bound constraints in the predicted active set.

Lin is the number of general linear constraints in the predicted active set.

Nln is the number of nonlinear constraints in the predicted active set (not printed if
ncnlin is zero).

Penalty is the Euclidean norm of the vector of penalty parameters used in the augmented
Lagrangian merit function (not printed if ncnlin is zero).

Norm Gf is the Euclidean norm of gFR, the gradient of the objective function with respect
to the free variables.

Cond H is a lower bound on the condition number of the Hessian approximation H.

Cond T is a lower bound on the condition number of the matrix of predicted active
constraints.

Conv is a three-letter indication of the status of the three convergence tests (2)−(4)
defined in the description of the optional parameter optim tol in Section 8.2.
Each letter is T if the test is satisfied, and F otherwise. The three tests indicate
whether:

(a) the sequence of iterates has converged;

(b) the projected gradient (Norm Gz) is sufficiently small; and

(c) the norm of the residuals of constraints in the predicted active set (Violtn)
is small enough.

If any of these indicators is F when nag opt nlin lsq terminates with the error
indicator NE NOERROR, the user should check the solution carefully.

When print level = Nag Soln Iter Const or Nag Soln Iter Full more detailed results are given at
each iteration. If print level = Nag Soln Iter Const these additional values are: the value of x
currently held in x; the current value of the objective function; the Euclidean norm of nonlinear
constraint violations; the values of the nonlinear constraints (the vector c); and the values of the
linear constraints, (the vector ALx).

If print level = Nag Soln Iter Full then the diagonal elements of the matrix T associated with the
TQ factorization (see (5) in Section 7.1 of the documentation for nag opt nlp (e04ucc)) of the QP
working set and the diagonal elements of R, the triangular factor of the transformed and re-ordered
Hessian (see (6) in Section 7.1 of the documentation for nag opt nlp (e04ucc)) are also output at
each iteration.

When print level = Nag Soln, Nag Soln Iter, Nag Soln Iter Long, Nag Soln Iter Const or
Nag Soln Iter Full the final printout from nag opt nlin lsq includes a listing of the status of every
variable and constraint. The following describes the printout for each variable.

Varbl gives the name (V) and index j, for j = 1, 2, ..., n of the variable.

State gives the state of the variable (FR if neither bound is in the active set, EQ if a fixed
variable, LL if on its lower bound, UL if on its upper bound). If Value lies outside
the upper or lower bounds by more than the feasibility tolerances specified by
the optional parameters lin feas tol and nonlin feas tol (see Section 8.2), State
will be ++ or -- respectively.

A key is sometimes printed before State to give some additional information
about the state of a variable.

A Alternative optimum possible. The variable is active at one of its bounds, but
its Lagrange Multiplier is essentially zero. This means that if the variable

3.e04unc.26 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04unc

were allowed to start moving away from its bound, there would be no change
to the objective function. The values of the other free variables might
change, giving a genuine alternative solution. However, if there are any
degenerate variables (labelled D), the actual change might prove to be zero,
since one of them could encounter a bound immediately. In either case, the
values of the Lagrange multipliers might also change.

D Degenerate. The variable is free, but it is equal to (or very close to) one of
its bounds.

I Infeasible. The variable is currently violating one of its bounds by more
than lin feas tol.

Value is the value of the variable at the final iteration.

Lower bound is the lower bound specified for the variable j. (None indicates that
bl[j − 1] ≤ inf bound, where inf bound is the optional parameter.)

Upper bound is the upper bound specified for the variable j. (None indicates that
bu[j − 1] ≥ inf bound, where inf bound is the optional parameter.)

Lagr Mult is the value of the Lagrange multiplier for the associated bound constraint. This
will be zero if State is FR unless bl[j−1] ≤ −inf bound and bu[j−1] ≥ inf bound,
in which case the entry will be blank. If x is optimal, the multiplier should be
non-negative if State is LL, and non-positive if State is UL.

Residual is the difference between the variable Value and the nearer of its (finite) bounds
bl[j − 1] and bu[j − 1]. A blank entry indicates that the associated variable is
not bounded (i.e., bl[j − 1] ≤ −inf bound and bu[j − 1] ≥ inf bound).

The meaning of the printout for linear and nonlinear constraints is the same as that given above for
variables, with ‘variable’ replaced by ‘constraint’, bl[j−1] and bu[j−1] are replaced by bl[n+j−1]
and bu[n+ j − 1] respectively, and with the following changes in the heading:
L Con gives the name (L) and index j, for j = 1, 2, ..., nL of the linear constraint.

N Con gives the name (N) and index (j − nL), for j = nL + 1, nL + 2, ..., nL + nN of the
nonlinear constraint.

The I key in the State column is printed for general linear constraints which currently violate one
of their bounds by more than lin feas tol and for nonlinear constraints which violate one of their
bounds by more than nonlin feas tol.

Note that movement off a constraint (as opposed to a variable moving away from its bound) can
be interpreted as allowing the entry in the Residual column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate
to this precision.

For the output governed by minor print level, the user is referred to the documentation for
nag opt lin lsq (e04ncc). The option minor print level in the current document is equivalent to
options.print level in the documentation for nag opt lin lsq (e04ncc).

If options.print level = Nag NoPrint then printout will be suppressed; the user can print the final
solution when nag opt nlin lsq returns to the calling program.

8.3.1. Output of Results via a User-defined Printing Function

Users may also specify their own print function for output of iteration results and the final solution
by use of the options.print fun function pointer, which has prototype

void (*print_fun)(const Nag_Search_State *st, Nag_Comm *comm);

This section may be skipped by users who only wish to use the default printing facilities.

When a user-defined function is assigned to options.print fun this will be called in preference to the
internal print function of nag opt nlin lsq. Calls to the user-defined function are again controlled
by means of the options.print level, options.minor print level and options.print deriv members.
Information is provided through st and comm, the two structure arguments to print fun.

[NP3491/6] 3.e04unc.27

nag opt nlin lsq NAG C Library Manual

If comm->it maj prt = TRUE then results from the last major iteration of nag opt nlin lsq
are provided through st. Note that print fun will be called with comm->it maj prt =
TRUE only if print level = Nag Iter, Nag Soln Iter, Nag Soln Iter Long Nag Soln Iter Const or
Nag Soln Iter Full. The following members of st are set:

n – Integer
the number of variables.

nclin – Integer
the number of linear constraints.

ncnlin – Integer
the number of nonlinear constraints.

nactiv – Integer
the total number of active elements in the current set.

iter – Integer
the major iteration count.

minor iter – Integer
the minor iteration count for the feasibility and the optimality phases of the QP subproblem.

step – double
the step taken along the computed search direction.

nfun – Integer
the cumulative number of objective function evaluations needed for the line search.

merit – double
the value of the augmented Lagrangian merit function at the current iterate.

objf – double
the current value of the objective function.

norm nlnviol – double
the Euclidean norm of nonlinear constraint violations (only available if st->ncnlin > 0).

violtn – double
the Euclidean norm of the residuals of constraints that are violated or in the predicted active
set (only available if st->ncnlin > 0).

norm gz – double
‖ZT gFR‖, the Euclidean norm of the projected gradient.

nz – Integer
the number of columns of Z (see Section 7.1 of the documentation for nag opt nlp (e04ucc)).

bnd – Integer
the number of simple bound constraints in the predicted active set.

lin – Integer
the number of general linear constraints in the predicted active set.

nln – Integer
the number of nonlinear constraints in the predicted active set (only available if
st->ncnlin > 0).

penalty – double
the Euclidean norm of the vector of penalty parameters used in the augmented Lagrangian
merit function (only available if st->ncnlin > 0).

norm gf – double
the Euclidean norm of gFR, the gradient of the objective function with respect to the free
variables.

cond h – double
a lower bound on the condition number of the Hessian approximation H.

3.e04unc.28 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04unc

cond hz – double
a lower bound on the condition number of the projected Hessian approximation HZ .

cond t – double
a lower bound on the condition number of the matrix of predicted active constraints.

iter conv – Boolean
TRUE if the sequence of iterates has converged, i.e., convergence condition (2) (see description
of options.optim tol in Section 8.2) is satisfied.

norm gz small – Boolean
TRUE if the projected gradient is sufficiently small, i.e., convergence condition (3) (see
description of options.optim tol in Section 8.2) is satisfied.

violtn small – Boolean
TRUE if the violations of the nonlinear constraints are sufficiently small, i.e., convergence
condition (4) (see description of options.optim tol in Section 8.2) is satisfied.

update modified – Boolean
TRUE if the quasi-Newton update was modified to ensure that the Hessian is positive-definite.

qp not feasible – Boolean
TRUE if the QP subproblem has no feasible point.

c diff – Boolean
TRUE if central differences were used to compute the unspecified objective and constraint
gradients.

step limit exceeded – Boolean
TRUE if the line search produced a relative change in x greater than the value defined by
the optional parameter step limit.

refactor – Boolean
TRUE if the approximate Hessian has been refactorized.

x – double ∗
contains the components x[j − 1] of the current point x, for j = 1, 2, . . . ,st->n.

state – Integer ∗
contains the status of the st->n variables, st->nclin linear, and st->ncnlin nonlinear
constraints (if any). See Section 8.2 for a description of the possible status values.

ax – double ∗
if st->nclin > 0, ax[j − 1] contains the current value of the jth linear constraint, for
j = 1, 2, . . . ,st->nclin.

cx – double ∗
if st->ncnlin > 0, cx[j − 1] contains the current value of nonlinear constraint cj , for
j = 1, 2, . . . ,st->ncnlin.

diagt – double ∗
if st->nactiv > 0, the st->nactiv elements of the diagonal of the matrix T .

diagr – double ∗
contains the st->n elements of the diagonal of the upper triangular matrix R.

If comm->sol sqp prt = TRUE then the final result from nag opt nlin lsq is provided through
st. Note that print fun will be called with comm->sol sqp prt = TRUE only if print level =
Nag Soln, Nag Soln Iter Nag Soln Iter Long, Nag Soln Iter Const or Nag Soln Iter Full. The
following members of st are set:

iter – Integer
the number of iterations performed.

n – Integer
the number of variables.

nclin – Integer
the number of linear constraints.

[NP3491/6] 3.e04unc.29

nag opt nlin lsq NAG C Library Manual

ncnlin – Integer
the number of nonlinear constraints.

x – double ∗
contains the components x[j − 1] of the final point x, for j = 1, 2, . . . ,st->n.

state – Integer ∗
contains the status of the st->n variables, st->nclin linear, and st->ncnlin nonlinear
constraints (if any). See Section 8.2 for a description of the possible status values.

ax – double ∗
if st->nclin > 0, ax[j − 1] contains the final value of the jth linear constraint, for j =
1, 2, . . .,st->nclin.

cx – double ∗
if st->ncnlin > 0, cx[j − 1] contains the final value of nonlinear constraint cj , for j =
1, 2, . . . ,st->ncnlin.

bl – double ∗
contains the st->n+st->nclin+st->ncnlin lower bounds on the variables.

bu – double ∗
contains the st->n+st->nclin+st->ncnlin upper bounds on the variables.

lambda – double ∗
contains the st->n+st->nclin+st->ncnlin final values of the Lagrange multipliers.

If comm->g prt = TRUE then the results from derivative checking are provided through st. Note
that print fun will be called with comm->g prt only if print deriv = Nag D Sum or Nag D Full.
The following members of st are set:

m – Integer
the number of subfunctions.

n – Integer
the number of variables.

ncnlin – Integer
the number of nonlinear constraints.

x – double ∗
contains the components x[j − 1] of the initial point x0, for j = 1, 2, . . . ,st->n.

fjac – double ∗
contains elements of the Jacobian of F at the initial point x0 (∂fi/∂xj is held at location
fjac[(i− 1)∗st->tdfjac+j − 1], i = 1, 2, . . . ,st->m, j = 1, 2, . . . ,st->n).

tdfjac – Integer
the trailing dimension of fjac.

conjac – double ∗
contains the elements of the Jacobian matrix of nonlinear constraints at the initial point
x0 (∂ci/∂xj is held at location conjac[(i − 1)∗st->n+j − 1], i = 1, 2, . . . ,st->ncnlin, j =
1, 2, . . . ,st->n).

In this case the details of any derivative check performed by nag opt nlin lsq are held in the following
substructure of st:

gprint – Nag GPrintSt ∗
which in turn contains three substructures g chk, f sim, c sim and two pointers to arrays of
substructures, f comp and c comp.

g chk – Nag Grad Chk St
the substructure g chk contains the members:

type – Nag GradChk
the type of derivative check performed by nag opt nlin lsq. This will be the same
value as in options.verify grad.

3.e04unc.30 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04unc

g error – int
this member will be equal to one of the error codes NE NOERROR or
NE DERIV ERRORS according to whether the derivatives were found to be
correct or not.

obj start – Integer
specifies the column of the objective Jacobian at which any component check
started. This value will be equal to options.obj check start.

obj stop – Integer
specifies the column of the objective Jacobian at which any component check
ended. This value will be equal to options.obj check stop.

con start – Integer
specifies the element at which any component check of the constraint gradient
started. This value will be equal to options.con check start.

con stop – Integer
specifies the element at which any component check of the constraint gradient
ended. This value will be equal to options.con check stop.

f sim – Nag SimSt
The result of a simple derivative check of the objective gradient, gprint->g chk.type =
Nag SimpleCheck, will be held in this substructure in members:

n elements – Integer
the number of columns of the objective Jacobian for which a simple check has
been carried out, i.e., those columns which do not contain unknown elements.

correct – Boolean
if TRUE then the objective Jacobian is consistent with the finite difference
approximation according to a simple check.

max error – double
the maximum error found between the norm of a subfunction gradient and its
finite difference approximation.

max subfunction – Integer
the subfunction which has the maximum error between its norm and its finite
difference approximation.

c sim – Nag SimSt
The result of a simple derivative check of the constraint Jacobian, gprint->g chk.type
= Nag SimpleCheck, will be held in this substructure in members:

n elements – Integer
the number of columns of the constraint Jacobian for which a simple check has
been carried out, i.e., those columns which do not contain unknown elements.

correct – Boolean
if TRUE then the Jacobian is consistent with the finite difference approximation
according to a simple check.

max error – double
the maximum error found between the norm of a constraint gradient and its finite
difference approximation.

max constraint – Integer
the constraint gradient which has the maximum error between its norm and its
finite difference approximation.

f comp – Nag CompSt ∗
The results of a requested component derivative check of the Jacobian of the objective
function subfunctions, st->gprint.g chk.type = Nag CheckObj or Nag CheckObjCon,
will be held in the array of st->m∗st->n substructures of type Nag CompSt pointed to
by f comp. The element st->gprint.f comp[(i − 1)∗st->n +j − 1] will hold the details

[NP3491/6] 3.e04unc.31

nag opt nlin lsq NAG C Library Manual

of the component derivative check for Jacobian element i, j, for i = 1, 2, . . . ,st->ncnlin;
j = 1, 2, . . . ,st->n. The procedure for the derivative check is based on finding an
interval that produces an acceptable estimate of the second derivative, and then
using that estimate to compute an interval that should produce a reasonable forward-
difference approximation. The Jacobian element is then compared with the difference
approximation. (The method of finite difference interval estimation is based on Gill et
al (1983).)

correct – Boolean
if TRUE then this gradient element is consistent with its finite difference
approximation.

hopt – double
the optimal finite difference interval. This is dx[i] in the default derivative
checking printout (see Section 8.3).

gdiff – double
the finite difference approximation for this component.

iter – Integer
the number of trials performed to find a suitable difference interval.

comment – char ∗
a character string which describes the possible nature of the reason for which an
estimation of the finite difference interval failed to produce a satisfactory relative
condition error of the second-order difference. Possible strings are: "Constant?",
"Linear or odd?", "Too nonlinear?" and "Small derivative?".

c comp – Nag CompSt ∗
The results of a requested component derivative check of the Jacobian of nonlinear
constraint functions, st->gprint.g chk.type = Nag CheckCon or Nag CheckObjCon,
will be held in the array of st->ncnlin∗st->n substructures of type Nag CompSt pointed
to by c comp. The element st->gprint.f comp[(i− 1)∗st->n+j− 1] will hold the details
of the component derivative check for Jacobian element i, j, for i = 1, 2, . . . ,st->ncnlin;
j = 1, 2, . . . ,st->n. The procedure for the derivative check is based on finding an
interval that produces an acceptable estimate of the second derivative, and then
using that estimate to compute an interval that should produce a reasonable forward-
difference approximation. The Jacobian element is then compared with the difference
approximation. (The method of finite difference interval estimation is based on Gill et
al (1983).)

The members of c comp are as for f comp.

The relevant members of the structure comm are:

g prt – Boolean
will be TRUE only when the print function is called with the result of the derivative check
of objfun and confun.

it maj prt – Boolean
will be TRUE when the print function is called with information about the current major
iteration.

sol sqp prt – Boolean
will be TRUE when the print function is called with the details of the final solution.

it prt – Boolean
will be TRUE when the print function is called with information about the current minor
iteration (i.e., an iteration of the current QP subproblem). See the documentation for
nag opt lin lsq (e04ncc) for details of which members of st are set.

new lm – Boolean
will be TRUE when the Lagrange multipliers have been updated in a QP subproblem. See
the documentation for nag opt lin lsq (e04ncc) for details of which members of st are set.

3.e04unc.32 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04unc

sol prt – Boolean
will be TRUE when the print function is called with the details of the solution of a QP
subproblem, i.e., the solution at the end of a major iteration. See the documentation for
nag opt lin lsq (e04ncc) for details of which members of st are set.

user – double ∗
iuser – Integer ∗
p – Pointer

Pointers for communication of user information. If used they must be allocated memory by
the user either before entry to nag opt nlin lsq or during a call to objfun, confun or print fun.
The type Pointer is void *.

9. Error Indications and Warnings

NE USER STOP
User requested termination, user flag value = 〈value〉.
This exit occurs if the user sets comm->flag to a negative value in objfun or confun. If fail is
supplied the value of fail.errnum will be the same as the user’s setting of comm->flag.

NE INT OPT ARG LT
On entry, options.obj check start = 〈value〉.
Constraint: options.obj check start ≥ 1.

On entry, options.obj check stop = 〈value〉.
Constraint: options.obj check stop ≥ 1.

On entry, options.con check start = 〈value〉.
Constraint: options.con check start ≥ 1.

On entry, options.con check stop = 〈value〉.
Constraint: options.con check stop ≥ 1.

NE INT OPT ARG GT
On entry, options.obj check start = 〈value〉.
Constraint: options.obj check start ≤ n.

On entry, options.obj check stop = 〈value〉.
Constraint: options.obj check stop ≤ n.

On entry, options.con check start = 〈value〉.
Constraint: options.con check start ≤ n.

On entry, options.con check stop = 〈value〉.
Constraint: options.con check stop ≤ n.

NE 2 INT OPT ARG CONS
On entry, options.con check start = 〈value〉 while options.con check stop = 〈value〉.
Constraint: options.con check start ≤ options.con check stop.

On entry, options.obj check start = 〈value〉 while options.obj check stop = 〈value〉.
Constraint: options.obj check start ≤ options.obj check stop.

NE INT ARG LT
On entry, m must not be less than 1: m = 〈value〉.
On entry, n must not be less than 1: n = 〈value〉.
On entry, nclin must not be less than 0: nclin = 〈value〉.
On entry, ncnlin must not be less than 0: ncnlin = 〈value〉.

NE 2 INT ARG LT
On entry, tda = 〈value〉 while n = 〈value〉. These parameters must satisfy tda ≥ n.

NE OPT NOT INIT
Options structure not initialized.

[NP3491/6] 3.e04unc.33

nag opt nlin lsq NAG C Library Manual

NE BAD PARAM
On entry, parameter options.print level had an illegal value.
On entry, parameter options.minor print level had an illegal value.
On entry, parameter options.start had an illegal value.
On entry, parameter options.verify grad had an illegal value.
On entry, parameter options.print deriv had an illegal value.

NE INVALID INT RANGE 1
Value 〈value〉 given to options.h reset freq not valid. Correct range is h reset freq > 0.
Value 〈value〉 given to options.max iter not valid. Correct range is max iter ≥ 0.
Value 〈value〉 given to options.minor max iter not valid. Correct range is
minor max iter ≥ 0.

NE INVALID REAL RANGE F
Value 〈value〉 given to options.step limit not valid. Correct range is step limit > 0.0.
Value 〈value〉 given to options.inf bound not valid. Correct range is inf bound > 0.0.
Value 〈value〉 given to options.inf step not valid. Correct range is inf step > 0.0.

NE INVALID REAL RANGE EF
Value 〈value〉 given to options.f prec not valid. Correct range is ε ≤ f prec < 1.0.
Value 〈value〉 given to options.optim tol not valid. Correct range is f prec ≤ optim tol < 1.0.
Value 〈value〉 given to options.c diff int not valid. Correct range is ε ≤ c diff int < 1.0.
Value 〈value〉 given to options.f diff int not valid. Correct range is ε ≤ f diff int < 1.0.
Value 〈value〉 given to options.lin feas tol not valid. Correct range is ε ≤ lin feas tol < 1.0.
Value 〈value〉 given to options.nonlin feas tol not valid. Correct range is
ε ≤ nonlin feas tol < 1.0.

NE INVALID REAL RANGE FF
Value 〈value〉 given to options.linesearch tol not valid. Correct range is
0.0 ≤ linesearch tol < 1.0.
Value 〈value〉 given to options.crash tol not valid. Correct range is 0.0 ≤ crash tol ≤ 1.0.

NE BOUND
The lower bound for variable 〈value〉 (array element bl[〈value〉]) is greater than the upper
bound.

NE BOUND LCON
The lower bound for linear constraint 〈value〉 (array element bl[〈value〉]) is greater than the
upper bound.

NE BOUND NLCON
The lower bound for nonlinear constraint 〈value〉 (array element bl[〈value〉]) is greater than
the upper bound.

NE BOUND EQ
The lower bound and upper bound for variable 〈value〉 (array elements bl[〈value〉] and
bu[〈value〉]) are equal but they are greater than or equal to options.inf bound.

NE BOUND EQ LCON
The lower bound and upper bound for linear constraint 〈value〉 (array elements bl[〈value〉]
and bu[〈value〉]) are equal but they are greater than or equal to options.inf bound.

NE BOUND EQ NLCON
The lower bound and upper bound for nonlinear constraint 〈value〉 (array elements bl[〈value〉]
and bu[〈value〉]) are equal but they are greater than or equal to options.inf bound.

NE STATE VAL
options.state[〈value〉] is out of range. state[〈value〉] = 〈value〉.

NE ALLOC FAIL
Memory allocation failed.

NW NOT CONVERGED
Optimal solution found, but the sequence of iterates has not converged with the requested
accuracy.

3.e04unc.34 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04unc

The final iterate x satisfies the first-order Kuhn–Tucker conditions to the accuracy requested,
but the sequence of iterates has not yet converged. nag opt nlin lsq was terminated because no
further improvement could be made in the merit function (see Section 7 of the documentation
for nag opt nlp (e04ucc) for more details).
This value of fail.code may occur in several circumstances. The most common situation is
that the user asks for a solution with accuracy that is not attainable with the given precision
of the problem (as specified by the optional parameter f prec (default value = ε0.9, where ε
is the machine precision; see Section 8.2). This condition will also occur if, by chance, an
iterate is an ‘exact’ Kuhn–Tucker point, but the change in the variables was significant at
the previous iteration. (This situation often happens when minimizing very simple functions,
such as quadratics.)
If the four conditions listed in Section 10.1 are satisfied then x is likely to be a solution of (1)
even if fail.code = NW NOT CONVERGED.

NW LIN NOT FEASIBLE
No feasible point was found for the linear constraints and bounds.

nag opt nlin lsq has terminated without finding a feasible point for the linear constraints and
bounds, which means that either no feasible point exists for the given value of the optional
parameter lin feas tol (default value =

√
ε, where ε is the machine precision; see Section

8.2), or no feasible point could be found in the number of iterations specified by the optional
parameter minor max iter (default value = max(50,3(n + nL + nN)); see Section 8.2). The
user should check that there are no constraint redundancies. If the data for the constraints
are accurate only to an absolute precision σ, the user should ensure that the value of the
optional parameter lin feas tol is greater than σ. For example, if all elements of AL are of
order unity and are accurate to only three decimal places, lin feas tol should be at least 10−3.

NW NONLIN NOT FEASIBLE
No feasible point could be found for the nonlinear constraints.

The problem may have no feasible solution. This means that there has been a sequence of QP
subproblems for which no feasible point could be found (indicated by I at the end of each terse
line of output; see Section 4.1). This behaviour will occur if there is no feasible point for the
nonlinear constraints. (However, there is no general test that can determine whether a feasible
point exists for a set of nonlinear constraints.) If the infeasible subproblems occur from the
very first major iteration, it is highly likely that no feasible point exists. If infeasibilities
occur when earlier subproblems have been feasible, small constraint inconsistencies may be
present. The user should check the validity of constraints with negative values of the optional
parameter state. If the user is convinced that a feasible point does exist, nag opt nlin lsq
should be restarted at a different starting point.

NW TOO MANY ITER
The maximum number of iterations, 〈value〉, have been performed.
The value of the optional parameter max iter may be too small. If the method appears to be
making progress (e.g., the objective function is being satisfactorily reduced), increase the value
of options.max iter and rerun nag opt nlin lsq; alternatively, rerun nag opt nlin lsq, setting
the optional parameter start = Nag Warm to specify the initial working set. If the algorithm
seems to be making little or no progress, however, then the user should check for incorrect
gradients or ill conditioning as described below under fail.code = NW KT CONDITIONS.
Note that ill conditioning in the working set is sometimes resolved automatically by the
algorithm, in which case performing additional iterations may be helpful. However, ill
conditioning in the Hessian approximation tends to persist once it has begun, so that allowing
additional iterations without altering R is usually inadvisable. If the quasi-Newton update
of the Hessian approximation was reset during the latter iterations (i.e., an R occurs at the
end of each terse line; see Section 4.1), it may be worthwhile setting start = Nag Warm and
calling nag opt nlin lsq from the final point.

NW KT CONDITIONS
The current point cannot be improved upon. The final point does not satisfy the first-order
Kuhn–Tucker conditions and no improved point for the merit function could be found during
the final line search.

[NP3491/6] 3.e04unc.35

nag opt nlin lsq NAG C Library Manual

The Kuhn–Tucker conditions are specified and the merit function described in Section 7.1
and Section 7.3 of the function documentation for nag opt nlp (e04ucc).
This sometimes occurs because an overly stringent accuracy has been requested, i.e., the value
of the optional parameter optim tol (default value = ε0.8

r , where εr is the relative precision of
F (x); see Section 8.2) is too small. In this case the user should apply the four tests described
in Section 10.1 to determine whether or not the final solution is acceptable (see Gill et al
(1981)), for a discussion of the attainable accuracy).
If many iterations have occurred in which essentially no progress has been made and
nag opt nlin lsq has failed completely to move from the initial point then functions objfun
and/or confun may be incorrect. The user should refer to comments below under fail.code
= NE DERIV ERRORS and check the gradients using the optional parameter verify grad
(default value = Nag Simple Check; see Section 8.2). Unfortunately, there may be small
errors in the objective and constraint gradients that cannot be detected by the verification
process. Finite difference approximations to first derivatives are catastrophically affected by
even small inaccuracies. An indication of this situation is a dramatic alteration in the iterates
if the finite difference interval is altered. One might also suspect this type of error if a switch
is made to central differences even when Norm Gz and Violtn (see Section 4.1) are large.
Another possibility is that the search direction has become inaccurate because of ill
conditioning in the Hessian approximation or the matrix of constraints in the working set;
either form of ill conditioning tends to be reflected in large values of Mnr (the number of
iterations required to solve each QP subproblem; see Section 4.1).
If the condition estimate of the projected Hessian (Cond Hz; see Section 4.1) is extremely
large, it may be worthwhile rerunning nag opt nlin lsq from the final point with the optional
parameter start = Nag Warm (see Section 8.2). In this situation, the optional parameters
state and lambda should be left unaltered and R (in optional parameter h) should be reset
to the identity matrix.
If the matrix of constraints in the working set is ill conditioned (i.e., Cond T is extremely
large; see Section 8.3), it may be helpful to run nag opt nlin lsq with a relaxed value of
the optional parameters lin feas tol and nonlin feas tol (default values

√
ε, and ε0.33 or

√
ε,

respectively, where ε is the machine precision; see Section 8.2). (Constraint dependencies
are often indicated by wide variations in size in the diagonal elements of the matrix T , whose
diagonals will be printed if the optional parameter print level = Nag Soln Iter Full (default
value = Nag Soln Iter; see Section 8.2)).

NE DERIV ERRORS
Large errors were found in the derivatives of the objective function and/or nonlinear
constraints.

This failure will occur if the verification process indicated that at least one gradient or
Jacobian element had no correct figures. The user should refer to the printed output to
determine which elements are suspected to be in error.
As a first-step, the user should check that the code for the objective and constraint values is
correct – for example, by computing the function at a point where the correct value is known.
However, care should be taken that the chosen point fully tests the evaluation of the function.
It is remarkable how often the values x = 0 or x = 1 are used to test function evaluation
procedures, and how often the special properties of these numbers make the test meaningless.
Errors in programming the function may be quite subtle in that the function value is ‘almost’
correct. For example, the function may not be accurate to full precision because of the
inaccurate calculation of a subsidiary quantity, or the limited accuracy of data upon which
the function depends. A common error on machines where numerical calculations are usually
performed in double precision is to include even one single precision constant in the calculation
of the function; since some compilers do not convert such constants to double precision, half
the correct figures may be lost by such a seemingly trivial error.

NW OVERFLOW WARN
Serious ill conditioning in the working set after adding constraint 〈value〉. Overflow may
occur in subsequent iterations.

If overflow occurs preceded by this warning then serious ill conditioning has probably occurred
in the working set when adding a constraint. It may be possible to avoid the difficulty by

3.e04unc.36 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04unc

increasing the magnitude of the optional parameter lin feas tol (default value =
√
ε, where

ε is the machine precision; see Section 8.2)and/or the optional parameter nonlin feas tol
(default value ε0.33 or

√
ε; see Section 8.2), and rerunning the program. If the message recurs

even after this change, the offending linearly dependent constraint j must be removed from
the problem. If overflow occurs in one of the user-supplied functions (e.g., if the nonlinear
functions involve exponentials or singularities), it may help to specify tighter bounds for some
of the variables (i.e., reduce the gap between the appropriate lj and uj).

NE NOT APPEND FILE
Cannot open file 〈string〉 for appending.

NE WRITE ERROR
Error occurred when writing to file 〈string〉.

NE NOT CLOSE FILE
Cannot close file 〈string〉.

NE INTERNAL ERROR
An internal error has occurred in this function. Check the function call and any array sizes.
If the call is correct then please consult NAG for assistance.

10. Further Comments

10.1 Termination Criteria

The function exits with fail.code = NE NOERROR if iterates have converged to a point x that
satisfies the Kuhn–Tucker conditions (see Section 7.1 of the documentation for nag opt nlp (e04ucc))
to the accuracy requested by the optional parameter optim tol (default value = ε0.8

r , see Section
8.2).

The user should also examine the printout from nag opt nlin lsq (see Section 4.1) to check whether
the following four conditions are satisfied:

(i) the final value of Norm Gz is significantly less than at the starting point;

(ii) during the final major iterations, the values of Step and Mnr are both one;

(iii) the last few values of both Violtn and Norm Gz become small at a fast linear rate; and

(iv) Cond Hz is small.
If all these conditions hold, x is almost certainly a local minimum.

10.2. Accuracy

If fail.code = NE NOERROR on exit, then the vector returned in the array x is an estimate of the
solution to an accuracy of approximately options.optim tol (default value = ε0.8

r , where εr is the
relative precision of F (x); see Section 8.2).

11. References

Gill P E Murray W and Wright M H (1981) Practical Optimization. Academic Press.
Gill P E, Murray W, Saunders M A and Wright M H (1983) Documentation of FDCORE and
FDCALC Report SOL 83–6. Department of Operations Research, Stanford University.

Hock W and Schittkowski K (1981) Test Examples for Nonlinear Programming Codes. Lecture
Notes in Economics and Mathematical Systems. 187 Springer-Verlag.

12. See Also

nag opt lp (e04mfc)
nag opt lin lsq (e04ncc)
nag opt qp (e04nfc)
nag opt nlp (e04ucc)
nag opt init (e04xxc)
nag opt read (e04xyc)
nag opt free (e04xzc)

[NP3491/6] 3.e04unc.37

nag opt nlin lsq NAG C Library Manual

13. Example 2

This example illustrates the use of the optional parameter, print fun, which allows the user to
customize the output from nag opt nlin lsq. The same problem is solved as in Example 1. The
options structure is declared and initialized by nag opt init (e04xxc). The print fun option is set
to the user defined print function user print. This checks the values of various Boolean members
of the comm structure parameter to determine what type of printout is required, i.e., derivative
checking printout if comm->g prt = TRUE, major iteration printout if comm->it maj prt = TRUE
and final solution printout if comm->sol sqp prt = TRUE. According to which flag, if any, is set,
user print then accesses the relevant members of its st structure parameter and outputs the
information. On return from nag opt nlin lsq, the memory freeing function nag opt free (e04xzc)
is used to free the memory assigned to the pointers in the options structure. Users should not use
the standard C function free() for this purpose.

13.1. Program Text

static void user_print(const Nag_Search_State *st, Nag_Comm *comm)
{

static char *states[] = {"IL", "IU", "FR", "LL", "UL", "EQ"};
Integer i, ixl, ixn;
Nag_SimSt c_sim, f_sim;

/* Derivative checking (only handle simple checks here) */
if (comm->g_prt)
{
/* First ensure that a check has been performed */
if (st->gprint->g_chk.type != Nag_NoCheck)
{

Vprintf("\n\nDerivative Checks\n-----------------\n\n");

/* Objective check */
f_sim = st->gprint->f_sim;
Vprintf("Simple check of objective gradients: ");
if (f_sim.correct)
Vprintf("OK\n");

else
Vprintf("ERROR!\n");

Vprintf("Max error was %9.2e in subfunction %1ld\n\n",
f_sim.max_error, f_sim.max_subfunction);

/* Similarly for constraints */
c_sim = st->gprint->c_sim;
Vprintf("Simple check of constraint gradients: ");
if (c_sim.correct)
Vprintf("OK\n");

else
Vprintf("ERROR!\n");

Vprintf("Max error was %9.2e in constraint %1ld\n",
c_sim.max_error, c_sim.max_constraint);

}
}

/* Major iteration output */
if (comm->it_maj_prt)
{
if (st->first)
{

Vprintf("\nIterations\n----------\n");
Vprintf("\n Maj Mnr Step Merit function\n");

}
Vprintf(" %4ld %4ld %8.1e %14.6e\n", st->iter, st->minor_iter,

st->step, st->merit);
}

/* Solution output */
if (comm->sol_sqp_prt)

3.e04unc.38 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04unc

{
Vprintf("\nSolution\n--------\n");

/* Variable results */
Vprintf("\nVarbl State Value Lagr Mult\n");
for (i = 0; i < st->n; ++i)
Vprintf("V%4ld %2s %14.6e %12.4e\n", i+1, states[st->state[i] + 2],

st->x[i], st->lambda[i]);

/* Linear constraint results */
Vprintf("\nL Con State Value Lagr Mult\n");
for (i = st->n; i < st->n + st->nclin; ++i)
{

ixl = i - st->n;
Vprintf("V%4ld %2s %14.6e %12.4e\n", ixl+1, states[st->state[i] + 2],

st->ax[ixl], st->lambda[i]);
}

/* Nonlinear constraint results */
Vprintf("\nN Con State Value Lagr Mult\n");
for (i = st->n + st->nclin; i < st->n + st->nclin + st->ncnlin; ++i)
{

ixn = i - st->n - st->nclin;
Vprintf("V%4ld %2s %14.6e %12.4e\n", ixn+1, states[st->state[i] + 2],

st->cx[ixn], st->lambda[i]);
}

}
} /* user_print */

static void ex2(void)
{

/* Local variables */
double x[NMAX], a[NCLIN][NMAX];
double f[MMAX], y[MMAX], fjac[MMAX][NMAX];
double bl[MAXBND], bu[MAXBND];
double objf;
Integer tda, tdfjac;
Integer i, j, m, n, nclin, ncnlin;
Nag_E04_Opt options;
static NagError fail, fail1;

fail.print = TRUE;
fail1.print = TRUE;

Vprintf("\nExample 2: user defined printing option\n");
Vscanf(" %*[^\n]"); /* Skip heading in data file */

/* Read problem dimensions */
Vscanf(" %*[^\n]");
Vscanf("%ld%ld%*[^\n]", &m, &n);
Vscanf(" %*[^\n]");
Vscanf("%ld%ld%*[^\n]", &nclin, &ncnlin);

if (m <= MMAX && n <= NMAX && nclin <= NCLIN && ncnlin <= NCNLIN)
{
tda = NMAX;
tdfjac = NMAX;
/* Read a, y, bl, bu and x from data file */

if (nclin > 0)
{

Vscanf(" %*[^\n]");
for (i = 0; i < nclin; ++i)
for (j = 0; j < n; ++j)
Vscanf("%lf",&a[i][j]);

}

/* Read the y vector of the objective */
Vscanf(" %*[^\n]");
for (i = 0; i < m; ++i)

[NP3491/6] 3.e04unc.39

nag opt nlin lsq NAG C Library Manual

Vscanf("%lf",&y[i]);

/* Read lower bounds */
Vscanf(" %*[^\n]");
for (i = 0; i < n + nclin + ncnlin; ++i)
Vscanf("%lf",&bl[i]);

/* Read upper bounds */
Vscanf(" %*[^\n]");
for (i = 0; i < n + nclin + ncnlin; ++i)
Vscanf("%lf",&bu[i]);

/* Read the initial point x */
Vscanf(" %*[^\n]");
for (i = 0; i < n; ++i)
Vscanf("%lf",&x[i]);

/* Set an option */
e04xxc(&options);
options.print_fun = user_print;

/* Solve the problem */
e04unc(m, n, nclin, ncnlin, (double*)a, tda, bl, bu, y, objfun,

confun, x, &objf, f, (double*)fjac, tdfjac, &options,
NAGCOMM_NULL, &fail);

e04xzc(&options, "all", &fail1);
}

} /* ex2 */

13.2. Program Data

Data for example 2

Values of m and n
44 2

Values of nclin and ncnln
1 1

Linear constraint matrix A
1.0 1.0

Objective vector y
0.49 0.49 0.48 0.47 0.48 0.47 0.46 0.46 0.45 0.43 0.45
0.43 0.43 0.44 0.43 0.43 0.46 0.45 0.42 0.42 0.43 0.41
0.41 0.40 0.42 0.40 0.40 0.41 0.40 0.41 0.41 0.40 0.40
0.40 0.38 0.41 0.40 0.40 0.41 0.38 0.40 0.40 0.39 0.39

Lower bounds
0.4 -4.0 1.0 0.0

Upper bounds
1.0e+25 1.0e+25 1.0e+25 1.0e+25

Initial estimate of x
0.4 0.0

3.e04unc.40 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04unc

13.3. Program Results

Example 2: user defined printing option

Parameters to e04unc

Number of variables........... 2
Linear constraints............ 1 Nonlinear constraints......... 1

start................... Nag_Cold
step_limit.............. 2.00e+00 machine precision....... 1.11e-16
lin_feas_tol............ 1.05e-08 nonlin_feas_tol......... 1.05e-08
optim_tol............... 3.26e-12 linesearch_tol.......... 9.00e-01
crash_tol............... 1.00e-02 f_prec.................. 4.37e-15
inf_bound............... 1.00e+20 inf_step................ 1.00e+20
max_iter................ 50 minor_max_iter.......... 50
hessian.................. FALSE h_reset_freq............ 2
h_unit_init............. FALSE
f_diff_int.............. Automatic c_diff_int.............. Automatic
obj_deriv............... TRUE con_deriv............... TRUE
verify_grad....... Nag_SimpleCheck print_deriv............ Nag_D_Full
print_level......... Nag_Soln_Iter minor_print_level..... Nag_NoPrint
outfile................. stdout

Derivative Checks

Simple check of objective gradients: OK
Max error was 1.04e-08 in subfunction 3

Simple check of constraint gradients: OK
Max error was 1.89e-08 in constraint 1

Iterations

Maj Mnr Step Merit function
0 2 0.0e+00 2.224070e-02
1 1 1.0e+00 1.455402e-02
2 1 1.0e+00 1.436491e-02
3 1 1.0e+00 1.427013e-02
4 1 1.0e+00 1.422989e-02
5 1 1.0e+00 1.422983e-02
6 1 1.0e+00 1.422983e-02

Solution

Varbl State Value Lagr Mult
V 1 FR 4.199527e-01 0.0000e+00
V 2 FR 1.284845e+00 0.0000e+00

L Con State Value Lagr Mult
V 1 FR 1.704798e+00 0.0000e+00

N Con State Value Lagr Mult
V 1 LL -9.767742e-13 3.3358e-02

[NP3491/6] 3.e04unc.41

